

Industrial Grade CompactFlash™ Card Product Specification

CPI Technologies, Inc.

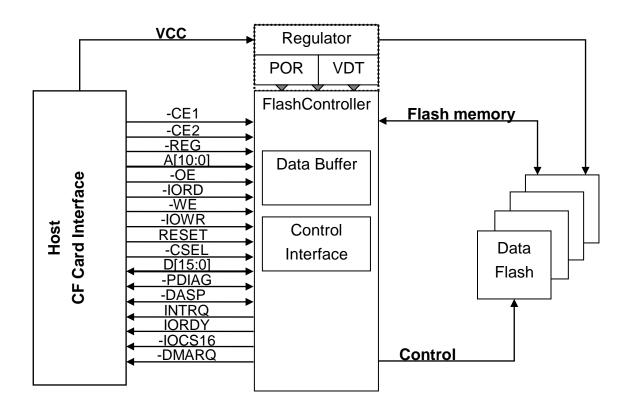
Specifications are subject to change without prior notice.

1.	Introduction	5
	1.1. General Description	5
	1.2. Block Diagram	5
2.	Features	6
3.	Product Specifications	7
	3.1. System Environmental Specification	7
	3.2. System Power Requirement	
	3.3. System Performance	8
	3.4. System Reliability	
	3.5. Capacity Specification	
4.	Intertface description	
	4.1. Pin Assignments	
	4.2. Pin Descriptions	
5.	Supported Commands	
	5.1. Identify Device Information (True IDE Mode)	
	5.2. Identify Device Information (PCMCIA Mode)	
	5.3. CIS Information	
	5.4. SMART Command Support	
6.	electrical specification	
-	6.1. Electrical Specification	
	6.2. Power Pin Description	36
	6.3. Absolute Maximum Rating	
	6.3.1. CompactFlash interface I/O at 5.0V	
	6.3.2. CompactFlash interface I/O at 3.3V	
	6.3.3. The I/O pins other than CompactFlash interface	38
	6.3.4. Recommended Operating Conditions	38
	6.4. AC Characteristics	39
	6.4.1. Attribute Memory Read Timing	39
	6.4.2. Configuration Register (Attribute Memory) Write Timing	40
	6.4.3. Common Memory Read Timing	41
	6.4.4. Common Memory Write Timing	42

	6.4.5. I/O Read Timing	44
	6.4.6. I/O Write Timing	46
	6.4.7. True IDE PIO Mode Read/Write Timing	48
	6.4.8. True IDE Multiword DMA Mode Read/Write Timing	51
	6.4.9. Ultra DMA Signal Usage In Each Interface Mode	53
	6.4.10. Ultra DMA Data Burst Timing Requirements	54
	6.4.11. Ultra DMA Data Burst Timing Descriptions	56
	6.4.12. Ultra DMA Sender and Recipient IC Timing Requirements	58
	6.4.13. Ultra DMA AC Signal Requirements	59
	6.4.14. Ultra DMA Data-In Burst Initiation Timing	60
	6.4.15. Sustained Ultra DMA Data-In Burst Timing	61
	6.4.16. Ultra DMA Data-In Burst Host Pause Timing	62
	6.4.17. Ultra DMA Data-In Burst Device Termination Timing	63
	6.4.18. Ultra DMA Data-In Burst Host Termination Timing	64
	6.4.19. Ultra DMA Data-Out Burst Initiation Timing	65
	6.4.20. Ultra DMA Data-Out Burst Device Pause Timing	67
	6.4.21. Ultra DMA Data-Out Burst Device Termination Timing	68
	6.4.22. Ultra DMA Data-Out Burst Host Termination Timing	69
7.	Physical Dimension	70
8.	Barcode description	71
9.	Part number decoder	72
10	Order information	73

Revision History

Revision	Draft Date	History	Author
1.0	2014/5/28	New release	Migo Huang
1.1	2015/9/9	Up Capacity Specification	Migo Huang
1.2	2017/6/13	Modify 4.2. Pin Descriptions	Migo Huang
1.3	2018/7/6	Rearrange the chapter	Golden Lee


1. INTRODUCTION

1.1. General Description

CompactFlash™ Cards are design base on CompactFlash™ Card Specification 3.0 compliant. It make up of a flash memory controller and NAND-Type flash memory. It can support a capacity of 128MB, 256MB, 512MB, 1GB, 2GB, 4GB, 8GB, 16GB and 32GB. The CompactFlash™ card come with Standard operating temperature grade (0°C ~+70 °C) and wide operating temperature grade

(-40°C ~ +85°C) to fulfil various specialized applications in normal or harsh operating environments. CompactFlash™ Card is ideal solutions for critical applications which request for long term supply with consistent key components.

1.2. Block Diagram

CF Card Block Diagram

2. FEATURES

- CompactFlash™ Card Specification 4.1 compliant
- Operating Modes:
 - PC Card Memory Mode.
 - PC Card I/O Mode.
 - True-IDE Mode.
- Ultra DMA Mode supported up to Mode 4
- Hardware RS-code ECC capable of correcting 24 bits in a 1,024-byte data

- Reliable wear-leveling algorithm to ensure the best of flash endurance.
- Very low power consumption
- Very high performance
- Rugged environment is working well
- Automatic error correction and retry capabilities
- Supports power down commands and Auto Stand-by / Sleep Mode
- +5 V $\pm 10\%$ or +3.3 V $\pm 5\%$ operation
- Low weight
- Noiseless
- MTBF > 2,000,000 hours
- Minimum 10,000 insertions
- Support S.M.A.R.T. Command
- Capacity:128MB, 256MB, 512 MB, 1GB, 2GB, 4GB, 8GB, 16GB, 32GB(unformatted)

3. PRODUCT SPECIFICATIONS

For all the following specifications, values are defined at ambient temperature and nominal supply voltage unless otherwise stated.

3.1. System Environmental Specification

Referral Part	Number	CFC-SIXXXX ¹ X ² X ³ X ⁴		
Wide	Operating	-40°C ~ +85°C		
Temperature	Non-operating	-50°C ~ +95°C		
Humidity	Operating	50/ O50/ non condensing		
	Non-operating	5% ~ 95% non-condensing		
Vibration	Operating	15C pook to pook maximum		
Vibration	Non-operating	15G peak-to-peak maximum		
Shock	Operating	2000 G maximum		
SHOCK	Non-operating	2000 G Maximum		
Altitude	Operating	50,000 feet maximum		
Ailitude	Non-operating	50,000 leet maximum		

Note:

- 1) XXXX1: Capacity, include 128M, 256M, 512M, 001G, 002G, 004G, 008G, 016G and 032G
- 2) X²:Temperature Grade I: (Wide temperature) C: (Standard temperature)
- 3) X³: Disk mode, include F:(Fixed Disk Mode, R: (Removable Disk Mode) A: (Auto Detect Disk Mode)
- 4) X4:Transfer mode, include P:(PIO mode 4), U:(U

3.2. System Power Requirement

Referral Part Numbe	r	CFC-SIXXXX ¹ X ² X ³ X ⁴
DC Input Voltage 100 (p-p)	OmV max. ripple	5V±10%
+5V Current	Standby Mode:	12.5 mA
(Maximum averageReading Mode:value)Writing Mode:		120 mA
		160mA

Note:

- 1) XXXX¹: Capacity, include 128M ,256M, 512M, 001G, 002G, 004G, 008G ,016G and 032G
- 2) X²: Temperature Grade I: (Wide temperature) C: (Standard temperature)
- 3) X³: Disk mode, include F:(Fixed Disk Mode, R: (Removable Disk Mode) A: (Auto Detect Disk Mode)
- 4) X⁴: Transfer mode, include P:(PIO mode 4), U:(UDMA mode 4)

3.3. System Performance

Data Transfer Rate To/F	rom Flash	25 Mbytes /sec burst	
Data Transfer Rate	Ultra DMA mode 4	66 Mbytes /sec burst	
To/From Host	PIO mode 4	16.6Mbytes /sec burst	
SLC Performance	Sequential Read	43 M bytes / sec Max.	
SLC Performance	Sequential Write	35 M bytes / sec Max.	
MLC Dorformono	Sequential Read	35 M bytes / sec Max.	
MLC Performance	Sequential Write	15.5 M bytes / sec Max.	

3.4. System Reliability

_	<u> </u>				
MTBF	> 2,000,000 hours				
Dete Deliebility	< 1 non-recoverable error in 10 ¹⁴ bits read				
Data Reliability	< 1 erroneous correction in 10 ²⁰ bits read				
Wear-leveling	Comparation				
Algorithms	Supportive				
ECC Tack note my	Hardware RS-code ECC capable of correcting 24 bits in a				
ECC Technology	1,024-byte data				
Endumence (CLC)	Greater than 1,000,000 cycles Logically contributed by				
Endurance (SLC)	Wear-leveling and advanced bad sector management				
Findings (MLC)	Greater than 100,000 cycles Logically contributed by				
Endurance (MLC)	Wear-leveling and advanced bad sector management				
Data Retention	10 years				

3.5. Capacity Specification

The specific capacities for the various models and the default number of heads, sectors and cylinders.

Capacity	Default Cylinder	Default Head	Default Sector	User Data Size
128MB	243	16	63	
256MB	487	16	63	
512MB	991	16	63	
1GB	1,966	16	63	Depended on file
2GB	3,900	16	63	Depended on file
4GB	7,785	16	63	management
8GB	15,538	16	63	
16GB	31,045	16	63	
32GB	62,041	16	63	

4. INTERTFACE DESCRIPTION

4.1. Pin Assignments

	Memory card r	nory card mode			True IDE mode	
Pin NO.	Signal name	I/O	Signal name	I/O	Signal name	1/0
1	GND		GND	_	GND	_
2	D3	I/O	D3	I/O	D3	I/O
3	D4	I/O	D4	I/O	D4	I/O
4	D5	I/O	D5	I/O	D5	I/O
5	D6	I/O	D6	I/O	D6	I/O
6	D7	I/O	D7	I/O	D7	I/O
7	-CE1	I	-CE1	I	-CE0	I
8	A10	I	A10	I	A10 ²	I
9	-OE	I	-OE	I	-ATA SEL	I
10	A9	I	A9	I	A9 ²	I
11	A8	I	A8	I	A8 ²	I
12	A7	I	A7	I	A7 ²	I
13	VCC	_	VCC	_	VCC	_
14	A6	I	A6	I	A6 ²	I
15	A5	I	A5	I	A5 ²	I
16	A4	I	A4	I	A4 ²	I
17	А3		A3	I	A3 ²	I
18	A2	I	A2	ļ	A2	I
19	A1		A1	Ī	A1	
20	A0		A0	I	A0	I
21	D0	I/O	D0	I/O	D0	I/O
22	D1	I/O	D1	I/O	D1	I/O
23	D2	I/O	D2	I/O	D2	I/O
24	WP	0	-IOIS16	0	-IOCS16	0
25	-CD2	0	-CD2	0	-CD2	0
26	-CD1	0	-CD1	0	-CD1	0
27	D11 ¹	I/O	D11 ¹	I/O	D11 ¹	I/O
28	D12 ¹	I/O	D12 ¹	I/O	D12 ¹	I/O
29	D13 ¹	I/O	D13 ¹	I/O	D13 ¹	I/O

	Memory card mode		I/O card mo	de	True IDE mo	ode
Pin NO.	Signal name	I/O	Signal name	I/O	Signal name	I/O
30	D14 ¹	I/O	D14 ¹	I/O	D14 ¹	I/O
31	D15 ¹	I/O	D15 ¹	I/O	D15 ¹	I/O
32	-CE2 ¹	1	-CE2 ¹	I	-CE1 ¹	I
33	-VS1	0	-VS1	0	-VS1	0
					-IORD ⁷	
34	-IORD	I	-IORD	ı	HSTROBE ⁸	I
					-HDMARDY ⁹	
0.5	101115	i	1011/5		-IOWR ⁷	
35	-IOWR	I	-IOWR	l	STOP ^{8, 9}	I
36	-WE	I	-WE	I	-WE ³	I
37	RDY/-BSY	0	-IREQ	0	INTRQ	0
38	VCC	_	VCC	_	VCC	_
39	-CSEL⁵	1	-CSEL⁵	I	-CSEL	I
40	-VS2	0	-VS2	0	-VS2	0
41	RESET	I	RESET	I	-RESET	I
	-WAIT				-IORDY ⁷	0
42		0	-WAIT	0	-DDMARDY ⁸	
						DSTROBE9
43	-INPACK	0	-INPACK	0	DMARQ	0
44	-REG	I	-REG	I	-DMACK ⁶	I
45	BVD2	I/O	-SPKR	I/O	-DASP	I/O
46	BVD1	I/O	-STSCHG	I/O	-PDIAG	I/O
47	D8 ¹	I/O	D8 ¹	I/O	D8 ¹	I/O
48	D9 ¹	I/O	D9 ¹	I/O	D9 ¹	I/O
49	D10 ¹	I/O	D10 ¹	I/O	D10 ¹	I/O
50	GND		GND		GND	_

Note:

- 1) These signals are required only for 16 bit accesses and not required when installed in 8 bit systems. Devices should allow for 3-state signals not to consume current.
- 2) The signal should be grounded by the host.
- 3) The signal should be tied to VCC by the host.
- 4) The mode is optional for CF+ Cards, but required for CompactFlash™ Storage Cards.

- 5) The -CSEL signal is ignored by the card in PC Card modes. However, because it is not pulled up on the card in these modes, it should not be left floating by the host in PC Card modes. In these modes, the pin should be connected by the host to PC Card A25 or grounded by the host.
- 6) If DMA operations are not used, the signal should be held high or tied to VCC by the host. For proper operation in older hosts: while DMA operations are not active, the card shall ignore this signal, including a floating condition
- 7) Signal usage in True IDE Mode except when Ultra DMA mode protocol is active.
- 8) Signal usage in True IDE Mode when Ultra DMA mode protocol DMA Write is active.
- 9) Signal usage in True IDE Mode when Ultra DMA mode protocol DMA Read is active.

4.2. Pin Descriptions

Signal Name	Dir.	Pin	Description
A10 – A00 (PC Card Memory Mode)	I	8,10,11,12, 14,15,16,17,	These address lines along with the -REG signal are used to select the
		18,19,20	following: The I/O port address registers within the Compact Flash Storage Card or CF+ Card, the memory mapped port address registers within the
			Compact Flash Storage Card or CF+ Card, a byte in the card's information
			structure and its configuration control and status registers.
A10 – A00 (PC Card I/O Mode)	I	18,19,20	This signal is the same as the PC Card Memory Mode signal.
A02 - A00			In True IDE Mode, only A [02:00] are used to select the one of eight
(True IDE Mode)			registers in the Task File, the remaining address lines should be
BVD1 (PC Card Memory Mode)	I/O	46	This signal is asserted high, as BVD1 is not supported.
-STSCHG			This signal is asserted low to alert the host to changes in the READY and
(PC Card I/O Mode) Status Changed			Write Protect states, while the I/O interface is configured. Its use is
			controlled by the Card Config and Status Register.
-PDIAG (True IDE Mode)			In the True IDE Mode, this input / output is the Pass Diagnostic signal in the Master / Slave handshake protocol.

BVD2 (PC Card Memory Mode)	I/O	45	This signal is asserted high, as BVD2 is not supported.
-SPKR			This line is the Binary Audio output from the card. If the Card does not
(PC Card I/O Mode)			support the Binary Audio function, this line should be held negated.
-DASP			In the True IDE Mode, this input/output is the Disk Active/Slave
(True IDE Mode)			Present signal in the Master/Slave hand shake protocol.
-CD1, -CD2	0	26,25	These Card Detect pins are connected to ground on the Compact Flash
(PC Card Memory Mode)			Storage Card or CF+ Card. They are used by the host to determine that the
			Compact Flash Storage Card or CF+ Card is fully inserted into its socket.
-CD1, -CD2			This signal is the same for all modes
(PC Card I/O Mode)			This signal is the same for all modes.
-CD1, -CD2 (True IDE Mode)			This signal is the same for all modes.
-CE1, -CE2	ı	7,32	These input signals are used both to select he card and to indicate to the
(PC Card Memory Mode) Card Enable			card whether a byte or a word operation is being performedCE2 always
Odia Enable			accesses the odd byte of the word.
-CE1, -CE2			-CE1 accesses the even byte or the Odd byte of the word depending on A0 and -CE2. A multiplexing scheme based on A0, -CE1, -CE2 allows 8 bit hosts to access all data on D0-D7.See Table30, Table33, Table35, Table39, Table41 and Table 42. While (-) DMACK is asserted,-CE1 and -CE2 shall be held negated and the width of the transfers shall be 16 bits.
(PC Card I/O Mode) Card Enable			This signal is the same as the PC Card Memory Mode signal.
-CS0, -CS1			
(True IDE Mode)			In the True IDE Mode, -CS0 is the address range select for the task file
			registers while -CS1 is used to select the Alternate Status Register and
			the Device Control Register.
-CSEL (PC Card Memory Mode)	I	39	This signal is not used for this mode, but should be connected by the host to PC Card A25 or grounded by the host.
-CSEL			This signal is not used for this mode, but should be connected by the host to PC Card A25 or grounded by the host.
(PC Card I/O Mode)			This internally pulled up signal is used to configure this device as a Master or
-CSEL			a Slave when configured in the True IDE Mode. When this pin is grounded,
(True IDE Mode)			this device is configured as a Master. When the pin is open, this device is
			configured as a Slave.
			l .

D15 - D00	I/O	31,30,29,28,	These lines carry the Data, Commands and Status information between the
(PC Card Memory Mode)		27,49,48,47, 6,5,4,3,2,	host and the controller. D00 is the LSB of the Even Byte of the Word.D08 is the LSB of the Odd Byte of the Word.
D15 - D00 (PC Card I/O Mode)		23, 22, 21	This signal is the same as the PC Card Memory Mode signal. In True IDE
D15 - D00 (True IDE Mode)			Mode, all Task File operations occur in byte mode on the low order bus D [7:0] while all data transfers are 16 bit using D[15:0].
GND (PC Card Memory Mode)		1,50	Ground.
GND (PC Card I/O Mode)			This signal is the same for all modes.
GND			This signal is the same for all modes.
(True IDE Mode)			
-IORD (PC Card Memory Mode except Ultra DMA Protocol Active)	ı	34	This signal is not used in this mode.
-IORD			This is an I/O Read strobe generated by the host. This signal gates I/O
(PC Card I/O Mode			data onto the bus from the Compact Flash Storage Card or CF+Card
except Ultra DMA			when the card is configured to use the I/O interface.
Protocol Active)			In True IDE Mode, while Ultra DMA mode is not active, this signal has
-IORD (True IDE Mode – Except Ultra DMA Protocol Active)			the same function as in PC Card I/O Mode.
-HDMARDY			In all modes when Ultra DMA mode DMA Read is active, this signal is
(All Modes - Ultra DMA Protocol DMA Read)			asserted by the host to indicate that the host is ready to receive Ultra DMA
Protocol DIVIA Read)			data-in bursts. The host may negate— HDMARDY to pause an Ultra DMA
HSTROBE			transfer.
(All Modes - Ultra DMA Protocol DMA Write)			In all modes when Ultra DMA mode DMA Write is active, this signal is the
			data out strobe generated by the host. Both the rising and falling edge of
			HSTROBE cause data to be latched by the device. The host may stop
			generating HSTROBE edges to pause an Ultra DMA data-out burst.

-IOWR	I	35	This signal is not used in this mode.
(PC Card Memory Mode - Except Ultra DMA Protocol Active)			
-IOWR			The I/O Write strobe pulse is used to clock I/O data on the Card Data bus
(PC Card I/O Mode –			into the Compact Flash Storage Card or CF+ Card controller registers
Except Ultra DMA Protocol Active)			when the Compact Flash Storage Card or CF+Card is configured to use
			the I/O interface.
-IOWR			The clocking shall occur on the negative to positive edge of the signal (trailing edge).
(True IDE Mode – Except Ultra DMA Protocol Active)			In True IDE Mode, while Ultra DMA mode protocol is not active, this signal has the same function as in PC Card I/O Mode. When Ultra DMA mode protocol is supported, this signal must be negated before entering Ultra DMA mode protocol.
STOP			
(All Modes – Ultra DMA			In All Modes, while Ultra DMA mode protocol is active, the assertion of this
Protocol Active)			signal causes the termination of the Ultra DMA data burst.
-OE	I	9	This is an Output Enable strobe generated by the host interface. It is used
(PC Card Memory Mode)			to read data from the Compact Flash Storage Card or CF+ Card in Memory
			Mode and to read the CIS and configuration registers.
-OE (PC Card I/O Mode)			In PC Card I/O Mode, this signal is used to read the CIS and configuration registers.
-ATASEL (True IDE Mode)			To enable True IDE Mode this input should be grounded by the host.
READY (PC Card Memory Mode)	0	37	In Memory Mode, this signal is set high when the Compact Flash Storage Card or CF+ Card is ready to accept a new data transfer operation and is held low when the card is busy.
			At power up and at Reset, the READY signal is held low (busy) until the Compact Flash Storage Card or CF+ Card has completed its power up or reset function. No access of any type should be made to the Compact Flash Storage Card or CF+ Card during this time.
			Note, however, that when a card is powered up and used with RESET continuously disconnected or asserted, the Reset function of the RESET pin is disabled. Consequently, the continuous assertion of RESET from the application of power shall not cause the READY signal to remain continuously in the busy state.
-IREQ			I/O Operation After the Compact Flesh Starters Could be OF Could be
(PC Card I/O Mode)			I/O Operation—After the Compact Flash Storage Card or CF+Card has been configured for I/O operation, this signal is used as Interrupt Request. This line is strobed low to generate a pulse mode interrupter held low for a
INTRQ			level mode interrupt.
(True IDE Mode)			In True IDE Mode signal is the active high Interrupt Request to the host.

-REG	I	44	This signal is used during Memory Cycles to distinguish between Common
(PC Card Memory Mode – Except Ultra DMA			Memory and Register (Attribute) Memory accesses. High for Common Memory, Low for Attribute Memory.
Protocol Active) Attribute Memory Select -REG			In PC Card Memory Mode, when Ultra DMA Protocol is supported by the host and the host has enabled Ultra DMA protocol on the card the, host shall keep the-REG signal negated during the execution of any
-REG (PC Card I/O Mode –			DMA Command by the device.
Except Ultra DMA Protocol Active)			The signal shall also be active (low) during I/O Cycles when the I/O address is on the Bus.
			In PC Card I/O Mode, when Ultra DMA Protocol is supported by the host and the host has enabled Ultra DMA protocol on the card the, host shall
-DMACK (PC Card Memory Mode when			keep the-REG signal asserted during the execution of any DMA Command by the device.
Ultra DMA Protocol Active) DMACK			This is a DMA Acknowledge signal that is asserted by the host in response to(-) DMARQ to initiate DMA transfers.
(PC Card I/O Mode when Ultra DMA Protocol Active)			In True IDE Mode, while DMA operations are not active, the card shall ignore the (-) DMACK signal, including a floating condition.
-DMACK (True IDE Mode)			If DMA operation is not supported by a True IDE Mode only host, this signal should be driven high or connected to VCC by the host.
(True IDE Mode)			A host that does not support DMA mode and implements both PC Card and True-IDE modes of operation need not alter the PC Card mode connections while in True-IDE mode as long as this does not prevent proper operation all modes.
RESET	ı	41	The Compact Flash Storage Card or CF+ Card is Reset when the
(PC Card Memory Mode)			RESET pin is high with the following important exception:
			The host may leave the RESET pin open or keep it continually high from
			the application of power without causing a continuous Reset of the card.
			Under either of these conditions, the card shall emerge from power-up
			having completed an initial Reset.
			The Compact Flash Storage Card or CF+ Card is also Reset when the Soft Reset bit in the Card Configuration Option Register is set.
RESET (PC Card I/O Mode)			This signal is the same as the PC Card Memory Mode signal.
-RESET (True IDE Mode)			In the True IDE Mode, this input pin is the active low hardware reset from the host.

VCC (PC Card Memory Mode)		13,38	+5V,+3.3Vpower.
VCC (PC Card I/O Mode)			This signal is the same for all modes.
VCC			
(True IDE Mode)			This signal is the same for all modes.
-VS1	0	33	Voltage Sense SignalsVS1 is grounded on the Card and sensed by the
-VS2		40	Host so that the Compact Flash Storage Card or CF+ Card CIS can be
(PC Card Memory Mode)			read at 3.3 volts and -VS2 is reserved by PCMCIA fora secondary voltage
			and is not connected on the Card.
-VS1 -VS2			
(PC Card I/O Mode)			This signal is the same for all modes.
-VS1			
-VS2			
(True IDE Mode)			This signal is the same for all modes.
-WAIT	0	42	The-WAIT signal is driven low by the Compact Flash Storage Card or
(PC Card Memory Mode – Except Ultra DMA			CF+ Card to signal the host to delay completion of a memory or I/O
Protocol Active)			cycle that is in progress.
-WAIT			
(PC Card I/O Mode – Except Ultra DMA Protocol Active)			This signal is the same as the PC Card Memory Mode signal.
IORDY			
(True IDE Mode – Except Ultra DMA Protocol Active)			In True IDE Mode, except in Ultra DMA modes, this output signal maybe used as IORDY.
-DDMARDY			
(All Modes – Ultra DMA Write Protocol Active)			In all modes, when Ultra DMA mode DMA Write is active, this signal is
TTING I TOLOGOT ACTIVE)			asserted by the device during a data burst to indicate that the device is
POTRODE			ready to receive Ultra DMA data out bursts. The device may negate
DSTROBE (All Modes – Ultra DMA			-DDMARDY to pause an Ultra DMA transfer.
Read Protocol Active)			
			In all modes, when Ultra DMA mode DMA Read is active, this signal is the
			data in strobe generated by the device. Both the rising and falling edge of
			DSTROBE cause data to be latched by the host. The device may stop
			generating DSTROBE edges to pause an Ultra DMA data in burst.

-WE (PC Card Memory Mode)	I	36	This is a signal driven by the host and used for strobing memory write data to the registers of the Compact Flash Storage Card or CF+ Card when the card is configured in the memory interface mode. It is also used for writing the configuration registers.
-WE (PC Card I/O Mode) -WE (True IDE Mode)			In PC Card I/O Mode, this signal is used for writing the configuration registers. In True IDE Mode, this input signal is not used and should be connected to VCC by the host.
WP (PC Card Memory Mode) Write Protect	0	24	Memory Mode – The Compact Flash Storage Card or CF+ Card does not have a write protect switch. This signal is held low after the completion of the reset initialization sequence.
-IOIS16 (PC Card I/O Mode)			I/O Operation— When the Compact Flash Storage Card or CF+ Card is configured for I/O Operation Pin 24 is used for the -I/O Selected is 16Bit Port(-IOIS16)function. Allow signal indicates that a 16 bit or odd byte only operation can be performed at the addressed port.
(True IDE Mode)			In True IDE Mode, this output signal is asserted low when this device is expecting a word data transfer cycle.

5. SUPPORTED COMMANDS

5.1. Identify Device Information (True IDE Mode)

Word	Default	Total	Data Field Type information
Address	value	Bytes	Bata Field Type Information
0	848Ah	2	General configuration - signature for the Compact Flash Storage Card
1	XXXXh	2	Default number of cylinders
2	0000h	2	Reserved
3	00XXh	2	Default number of heads
4	0000h	2	Obsolete
5	0240h	2	Obsolete
6	XXXXh	2	Default number of sectors per track
7-8	XXXXh	4	Number of sectors per card (Word 7 = MSW, Word 8 = LSW)
9	0000h	2	Obsolete
10-19	XXXXh	20	Serial number in ASCII (Right Justified)
20	0002h	2	Obsolete
21	0002h	2	Obsolete
22	0004h	2	Number of ECC bytes passed on Read/Write Long Commands
23-26	XXXXh	8	Firmware revision in ASCII. Big Endean Byte Order in Word
27.46	VVVVh	- 40	Model number in ASCII (Left Justified) Big Endean Byte Order
27-46	XXXXh	40	in Word
47	8001h	2	Maximum number of sectors on Read/Write Multiple command
48	0000h	2	Reserved
49	0300h	2	Capabilities
50	0000h	2	Reserved
51	0200h	2	PIO data transfer cycle timing mode
52	0000h	2	Obsolete
53	0007h	2	Field validity
54	XXXXh	2	Current numbers of cylinders
55	XXXXh	2	Current numbers of heads
56	XXXXh	2	Current sectors per track
57 F0	VVVVh	1	Current capacity in sectors (LBAs)(Word57=LSW,
37-36	57-58 XXXXh	า 4	Word58=MSW)
59	0101h	2	Multiple sector setting
60-61	XXXXh	4	Total number of sectors addressable in LBA Mode
62	0000h	2	Reserved

Word Address	Default value	Total Bytes	Data Field Type information
63	0007h	2	Multiword DMA transfer. In PCMCIA mode this value shall be oh
64	0003h	2	Advanced PIO modes supported
65	0078h	2	Minimum Multiword DMA transfer cycle time per word.
66	0078h	2	Recommended Multiword DMA transfer cycle time.
67	0078h	2	Minimum PIO transfer cycle time without flow control
68	0078h	2	Minimum PIO transfer cycle time with IORDY flow control
69-79	0000h	20	Reserved
80	0010h	2	Major version number
81	0000h	2	Minor version number
82	7028h	2	Command sets supported
83	5000h	2	Command sets supported
84	4000h	2	Command sets supported
85	0001h	2	Command sets Enable
86	0000h	2	Command sets Enable
87	0002h	2	Command sets Enable
88	001Fh	2	Ultra DMA support and selected
89	0000h	2	Time required for Security erase unit completion
90	0000h	2	Time required for Enhanced security erase unit completion
91	0000h	2	Current Advanced power management value
92	0000h	2	Master Password Revision Code
	600Fh		Hardware reset result (Master)
93	6F00h	2	Hardware reset result (Slave)
	603Fh		Hardware reset result (Master w/ slave present)
94-127	0000h	68	Reserved
128	0000h	2	Security status
129-159	0000h	64	vendor unique bytes
160	81F4h	2	Power requirement description
161	0000h	2	Reserved
162	0000h	2	Key management schemes supported
163	0092h	2	CF Advanced True IDE Timing Mode Capability and Setting
164	0000h	2	CF Advanced PCMCIA I/O and Memory Timing Mode Capability
104	UUUUII		and Setting 80ns cycle in memory and I/O mode
165-175	0000h	22	Reserved
176-255	0000h	140	Reserved

5.2. Identify Device Information (PCMCIA Mode)

Word	Default	Total	D. E. L. T L.C	
Address	value	Bytes	Data Field Type Information	
0	848Ah	2	General configuration - signature for the Compact Flash Storage Card	
1	XXXXh	2	Default number of cylinders	
2	0000h	2	Reserved	
3	00XXh	2	Default number of heads	
4	0000h	2	Obsolete	
5	0240h	2	Obsolete	
6	XXXXh	2	Default number of sectors per track	
7-8	XXXXh	4	Number of sectors per card (Word 7 = MSW, Word 8 = LSW)	
9	0000h	2	Obsolete	
10-19	XXXXh	20	Serial number in ASCII (Right Justified)	
20	0002h	2	Obsolete	
21	0002h	2	Obsolete	
22	0004h	2	Number of ECC bytes passed on Read/Write Long Commands	
23-26	XXXXh	8	Firmware revision in ASCII. Big Endian Byte Order in Word	
27-46	XXXXh	40	Model number in ASCII (Left Justified) Big Endian Byte Order in Word	
47	8001h	2	Maximum number of sectors on Read/Write Multiple command	
48	0000h	2	Reserved	
49	0200h	2	Capabilities	
50	0000h	2	Reserved	
51	0200h	2	PIO data transfer cycle timing mode	
52	0000h	2	Obsolete	
53	0003h	2	Field validity	
54	XXXXh	2	Current numbers of cylinders	
55	XXXXh	2	Current numbers of heads	
56	XXXXh	2	Current sectors per track	
57-58	XXXXh	4	Current capacity in sectors (LBAs)(Word57=LSW , Word58=MSW)	
59	0100h	2	Multiple sector setting	
60-61	XXXXh	4	Total number of sectors addressable in LBA Mode	
62	0000h	2	Reserved	
63	0000h	2	Multiword DMA transfer. In PCMCIA mode this value shall be oh	
64	0003h	2	Advanced PIO modes supported	

Word Address	Default value	Total Bytes	Data Field Type Information
65	0000h	2	Minimum Multiword DMA transfer cycle time per word. In PCMCIA mode this value shall be 0h
66	0000h	2	Recommended Multiword DMA transfer cycle time. In PCMCIA mode this value shall be oh
67	0078h	2	Minimum PIO transfer cycle time without flow control
68	0078h	2	Minimum PIO transfer cycle time with IORDY flow control
69-79	0000h	20	Reserved
80	0000h	2	Major version number
81	0000h	2	Minor version number
82	7028h	2	Command sets supported 0
83	500Ch	2	Command sets supported 1
84	4000h	2	Command sets supported 2
85	0001h	2	Command sets Enable 0
86	0000h	2	Command sets Enable 1
87	0000h	2	Command sets Enable 2
88	0000h	2	Ultra DMA supported and selected
89	0000h	2	Time required for Security erase unit completion
90	0000h	2	Time required for Enhanced security erase unit completion
91	0000h	2	Current Advanced power management value
93-127	0000h	70	Reserved
128	0000h	2	Security status
129-159	0000h	64	vendor unique bytes
160	81F4h	2	Power requirement description
161	0000h	2	Reserved
162	0000h	2	Key management schemes supported
163	0000h	2	CF Advanced True IDE Timing Mode Capability and Setting
164	891Bh	2	CF Advanced PCMCIA I/O and Memory Timing Mode Capability and Setting
165-175	0000h	22	Reserved
176-255	0000h	140	Reserved

Identify Drive Information Description

Word 0: General Configuration

This field indicates that the device is a CompactFlash[™] Storage Card. Note to host implementers: If Word 0 of the Identify drive information is 848Ah then the device complies with the CFA specification, not with the ATA-4 specification.

Word 1: Default Number of Cylinders

This field contains the number of translated cylinders in the default translation mode. This value will be the same as the number of cylinders.

Word 3: Default Number of Heads

This field contains the number of translated heads in the default translation mode.

Word 6: Default Number of Sectors per Track

This field contains the number of sectors per track in the default translation mode.

Words 7-8: Number of Sectors per Card

This field contains the number of sectors per CompactFlashTM Storage Card. This double word value is also the first invalid address in LBA translation mode.

Words 10-19: Serial Number

This field contains the serial number for this CompactFlash[™] Storage Card and is right justified and padded with spaces (20h).

Word 22: ECC Count

This field defines the number of ECC bytes used on each sector in the Read and Write Long commands. This value shall be set to 0004h.

Words 23-26: Firmware Revision

This field contains the revision of the firmware for this product.

Words 27-46: Model Number

This field contains the model number for this product and is left justified and padded with spaces (20h).

Word 47: Read/Write Multiple Sector Count

Bits 15-8 shall be the recommended value of 80h or the permitted value of 00h. Bits 7-0 of this word define the maximum number of sectors per block that the CompactFlash[™] Storage Card supports for Read/Write Multiple commands.

Word 49: Capabilities

Bit 13: Standby Timer If bit 13 is set to 1 then the Standby timer is supported as defined by the IDLE command If bit 13 is set to 0 then the Standby timer operation is defined by the vendor. Bit 11: IORDY Supported If bit 11 is set to 1 then this CompactFlashTM Storage Card supports IORDY operation. If bit 11 is set to 0 then this CompactFlashTM Storage Card may support IORDY operation. Bit 10: IORDY may be disabled Bit 10 shall be set to 0, indicating that IORDY may not be disabled. Bit 9: LBA supported Bit 9 shall be set to 1, indicating that this CompactFlashTM Storage Card supports LBA mode addressing. CF devices shall support LBA addressing. Bit 8: DMA Supported If bit 8 is set to 1 then Read DMA and Write DMA commands are supported. Bit 8 shall be set to 0. Read/Write DMA commands are not currently permitted on CF cards.

Word 51: PIO Data Transfer Cycle Timing Mode

The PIO transfer timing for each CompactFlashTM Storage Card falls into modes that have unique parametric timing specifications. The value returned in Bits 15-8 shall be 00h for mode 0, 01h for mode 1, or 02h for mode 2. Values 03h through FFh are reserved.

Word 53: Translation Parameters Valid

Bit 0 shall be set to 1 indicating that words 54 to 58 are valid and reflect the current number of cylinders, heads and sectors. If bit 1 of word 53 is set to 1, the values in words 64 through 70 are valid. If this bit is cleared to 0, the values reported in words 64-70 are not valid. Any CompactFlashTM Storage Card that supports PIO mode 3 or above shall set bit 1 of word 53 to one and support the fields contained in words 64 through 70.

Words 54-56: Current Number of Cylinders, Heads, Sectors/Track

These fields contain the current number of user addressable Cylinders, Heads, and Sectors/Track in the current translation mode.

Words 57-58: Current Capacity

This field contains the product of the current cylinders times heads times sectors.

Word 59: Multiple Sector Setting

Bits 15-9 are reserved and shall be set to 0. Bit 8 shall be set to 1 indicating that the Multiple Sector Setting is valid. Bits 7-0 are the current setting for the number of sectors that shall be transferred per interrupt on Read/Write Multiple commands.

Words 60-61: Total Sectors Addressable in LBA Mode

This field contains the total number of user addressable sectors for the CompactFlash[™] Storage Card in LBA mode only.

Word 64: Advanced PIO transfer modes supported

Bits 7 through 0 of word 64 of the Identify Device parameter information is defined as the advanced PIO data transfer supported field. If this field is supported, bit 1 of word 53 shall be set to one. This field is bit significant. Any number of bits may be set to one in this field by the CompactFlashTM Storage Card to indicate the advanced PIO modes it is capable of supporting. Of these bits, bits 7 through 2 are reserved for future advanced PIO modes. Bit 0, if set to one, indicates that the CompactFlashTM Storage Card supports PIO mode 3. Bit 1, if set to one, indicates that the CompactFlashTM Storage Card supports PIO mode 4.

Word 67: Minimum PIO transfer cycle time without flow control

Word 67 of the parameter information of the Identify Device command is defined as the minimum PIO transfer without flow control cycle time. This field defines, in nanoseconds, the minimum cycle time that, if used by the host, the CompactFlashTM Storage Card guarantees data integrity during the transfer without utilization of flow control. If this field is supported, Bit 1 of word 53 shall be set to one. Any CompactFlashTM Storage Card that supports PIO mode 3 or above shall support this field, and the value in word 67 shall not be less than the value reported in word 68. If bit 1 of word 53 is set to one because a CompactFlashTM Storage Card supports a field in words 64-70 other than this field and the CompactFlashTM Storage Card does not support this field, the CompactFlashTM Storage Card shall return a value of zero in this field.

Word 68: Minimum PIO transfer cycle time with IORDY

Word 68 of the parameter information of the Identify Device command is defined as the minimum PIO transfer with IORDY flow control cycle time. This field defines, in nanoseconds, the minimum cycle time that the CompactFlashTM Storage Card supports while performing data transfers while utilizing IORDY flow control. If this field is supported, Bit 1 of word 53 shall be set to one. Any CompactFlashTM Storage Card that supports PIO mode 3 or above shall support this field, and the value in word 68 shall be the fastest defined PIO mode supported by the CompactFlashTM Storage Card. If bit 1 of word 53 is set to one because a CompactFlashTM Storage Card supports a field in words 64-70 other than this field and the CompactFlashTM Storage Card does not support this field, the CompactFlashTM Storage Card shall return a value of zero in this field.

Words 82-84: Features/command sets supported

Words 82, 83, and 84 shall indicate features/command sets supported. The value 0000h or FFFFh was placed in each of these words by CompactFlashTM Storage Cards prior to ATA-3 and shall be interpreted by the host as meaning that features/command sets supported are not indicated. Bits 1 through 13 of word 83 and bits 0 through 13 of word 84 are reserved. Bit 14 of word 83 and word 84 shall be set to one and bit 15 of word 83 and word 84 shall be cleared to zero to provide indication that the features/command sets supported words are valid. The values in these words should not be depended on by host implementers. Bit 0 of word 82 shall be set to zero; the SMART feature set is not supported. If bit 1 of word 82 is set to one, the Security Mode feature set is supported. Bit 2 of word 82 shall be set to zero; the Removable Media feature set is not supported. Bit 3 of word 82 shall be set to one; the Power Management feature set is supported. Bit 4 of word 82 shall be set to zero; the Packet Command feature set is not supported. If bit 5 of word 82 is set to one, write cache is supported. If bit 6 of word 82 is set to one, look-ahead is supported. Bit 7 of word 82 shall be set to zero; release interrupt is not supported. Bit 8 of word 82 shall be set to zero; Service interrupt is not supported. Bit 9 of word 82 shall be set to zero; the Device Reset command is not supported. Bit 10 of word 82 shall be set to zero; the Host Protected Area feature set is not supported. Bit 11 of word 82 is obsolete. Bit 12 of word 82 shall be set to one; the CompactFlash™ Storage Card supports the Write Buffer command. Bit 13 of word 82 shall be set to one; the CompactFlashTM Storage Card supports the Read Buffer command. Bit 14 of word 82 shall be set to one; the CompactFlash[™] Storage Card supports the NOP command.

Bit 15 of word 82 is obsolete. Bit 0 of word 83 shall be set to zero; the CompactFlashTM Storage Card does not support the Download Microcode command. Bit 1 of word 83 shall be set to zero; the CompactFlashTM Storage Card does not support the Read DMA Queued and Write DMA Queued commands. Bit 2 of word 83 shall be set to one; the CompactFlashTM Storage Card supports the CFA feature set. If bit 3 of word 83 is set to one, the CompactFlashTM Storage Card supports the Advanced Power Management feature set. Bit 4 of word 83 shall be set to zero; the CompactFlashTM Storage Card does not support the Removable Media Status feature set.

Words 85-87: Features/command sets enabled

Words 85, 86, and 87 shall indicate features/command sets enabled. The value 0000h or FFFFh was placed in each of these words by CompactFlashTM Storage Cards prior to ATA-4 and shall be interpreted by the host as meaning that features/command sets enabled are not indicated. Bits 1 through 15 of word 86 are reserved. Bits 0-13 of word 87 are reserved. Bit 14 of word 87 shall be set to one and bit 15 of word 87 shall be cleared to zero to provide indication that the features/command sets enabled words are valid. The values in these words should not be depended on by host implementers. Bit 0 of word 85 shall be set to zero; the SMART feature set is not enabled. If bit 1 of word 85 is set to one, the Security Mode feature set has been enabled via the Security Set Password command. Bit 2 of word 85 shall be set to zero; the Removable Media feature set is not supported. Bit 3 of word 85 shall be set to one; the Power Management feature set is supported. Bit 4 of word 85 shall be set to zero; the Packet Command feature set is not enabled. If bit 5 of word 85 is set to one, write cache is enabled. If bit 6 of word 85 is set to one, look-ahead is enabled. Bit 7 of word 85 shall be set to zero; release interrupt is not enabled. Bit 8 of word 85 shall be set to zero; Service interrupt is not enabled. Bit 9 of word 85 shall be set to zero; the Device Reset command is not supported. Bit 10 of word 85 shall be set to zero; the Host Protected Area feature set is not supported. Bit 11 of word 85 is obsolete. Bit 12 of word 85 shall be set to one; the CompactFlash[™] Storage Card supports the Write Buffer command. Bit 13 of word 85 shall be set to one; the CompactFlash™ Storage Card supports the Read Buffer command. Bit 14 of word 85 shall be set to one; the CompactFlashTM Storage Card supports the NOP command.

Bit 15 of word 85 is obsolete. Bit 0 of word 86 shall be set to zero; the CompactFlashTM Storage Card does not support the Download Microcode command. Bit 1 of word 86 shall be set to zero; the CompactFlashTM Storage Card does not support the Read DMA Queued and Write DMA Queued commands. If bit 2 of word 86 shall be set to one, the CompactFlashTM Storage Card supports the CFA feature set. If bit 3 of word 86 is set to one, the Advanced Power Management feature set has been enabled via the Set Features command. Bit 4 of word 86 shall be set to zero; the CompactFlashTM Storage Card does not support the Removable Media Status feature set.

Word 89: Time required for Security erase unit completion

Word 89 specifies the time required for the Security Erase Unit command to complete. This command shall be supported on CompactFlash[™] Storage Cards that support security.

Value Time

0 Value not specified1-254 (Value * 2) minute255 >508 minutes

Word 90: Time required for Enhanced security erase unit completion

Word 90 specifies the time required for the Enhanced Security Erase Unit command to complete. This command shall be supported on CompactFlash[™] Storage Cards that support security.

Value Time

0 Value not specified1-254 (Value * 2) minutes255 >508 minutes

Word 91: Advanced power management level value

Bits 7-0 of word 91 contain the current Advanced Power Management level setting.

Word 128: Security Status

Bit 8: Security Level

If set to 1, indicates that security mode is enabled and the security level is maximum.

If set to 0 and security mode is enabled, indicates that the security level is high.

Bit 5: Enhanced security erase unit feature supported

If set to 1, indicates that the Enhanced security erase unit feature set is supported.

Bit 4: Expire

If set to 1, indicates that the security count has expired and Security Unlock and Security Erase Unit are command aborted until a power-on reset or hard reset.

Bit 3: Freeze

If set to 1, indicates that the security is Frozen.

Bit 2: Lock

If set to 1, indicates that the security is locked.

Bit 1: Enable/Disable

If set to 1, indicates that the security is enabled.

If set to 0, indicates that the security is disabled.

Bit 0: Capability If set to 1, indicates that CompactFlash[™] Storage Card supports security mode feature set. If set to 0, indicates that CompactFlash[™] Storage Card does not support security mode feature set.

Word 160: Power Requirement Description

This word is required for CompactFlash™ Storage Cards that support power mode 1.

Bit 15: VLD

If set to 1, indicates that this word contains a valid power requirement description.

If set to 0, indicates that this word does not contain a power requirement description.

Bit 14: RSV

This bit is reserved and must be 0.

Bit 13: -XP

If set to 1, indicates that the CompactFlash[™] Storage Card does not have Power Level 1 commands.

If set to 0, indicates that the CompactFlash™ Storage Card has Power Level 1 commands

Bit 12: -XE

If set to 1, indicates that Power Level 1 commands are disabled.

If set to 0, indicates that Power Level 1 commands are enabled.

Bit 0-11: Maximum current

this field contains the CompactFlash™ Storage Card's maximum current in mA.

Word 162: Key Management Schemes Supported

Bit 0: CPRM support

If set to 1, the device supports CPRM Scheme (Content Protection for Recordable Media)

If set to 0, the device does not support CPRM.

Bits 1-15 are reserved for future additional Key Management schemes.

5.3. CIS Information

Address	Data	Description of Contents	CIS Function
000H	01H	CISTPL_DEVICE	Tuple code
002H	04H	TPL_LINK	Tuple link
004H	DFH	Device information	Tuple data
006H	4AH	Device information	Tuple data
H800	01H	Device information	Tuple data
00AH	FFH	END MARKER	End of Tuple
00CH	1CH	CISTPL_DEVICE_OC	Tuple code
00EH	04H	TPL_LINK	Tuple link
010H	02H	Conditions information	Tuple data
012H	D9H	Device information	Tuple data
014H	01H	Device information	Tuple data
016H	FFH	END MARKER	End of Tuple
018H	18H	CISTPL_JEDEC_C	Tuple code
01AH	02H	TPL_LINK	Tuple link
01CH	DFH	PCMCIA's manufacturer's JEDEC ID code	Tuple data
01EH	01H	PCMCIA's JEDEC device code	Tuple data
020H	20H	CISTPL_MANFID	Tuple code
022H	04H	TPL_LINK	Tuple link
024H	0AH	Low byte of manufacturer's ID code	Tuple data
026H	00H	High byte of manufacturer's ID code	Tuple data
028H	00H	Low byte of product code	Tuple data
02AH	00H	High byte of product code	Tuple data
02CH	15H	CISTPL_VERS_1	Tuple code
02EH	13H	TPL_LINK	Tuple link
030H	04H	TPLLV1_MAJOR	Tuple data
032H	01H	TPLLV1_MINOR	Tuple data
034H	50H	' ' (Vender Specific Strings)	Tuple data
036H	48H	' ' (Vender Specific Strings)	Tuple data
038H	49H	' ' (Vender Specific Strings)	Tuple data
03AH	53H	' ' (Vender Specific Strings)	Tuple data
03CH	4FH	' ' (Vender Specific Strings)	Tuple data

Address	Data	Description of Contents	CIS Function
03EH	4EH	' ' (Vender Specific Strings)	Tuple data
040H	00H	Null Terminator	Tuple data
042H	43H	'C ' (Vender Specific Strings)	Tuple data
044H	46H	'F' (Vender Specific Strings)	Tuple data
046H	20H	' '(Vender Specific Strings)	Tuple data
048H	43H	' C ' (Vender Specific Strings)	Tuple data
04AH	61H	' a ' (Vender Specific Strings)	Tuple data
04CH	72h	'r' (Vender Specific Strings)	Tuple data
04EH	64H	' d ' (Vender Specific Strings)	Tuple data
050H	00H	Null Terminator	Tuple data
052H	00H	Reserved (Vender Specific Strings)	Tuple data
054H	FFH	END MARKER	End of Tuple
056H	21H	CISTPL_FUNCID	Tuple code
058H	02H	TPL_LINK	Tuple link
05AH	04H	IC Card function code	Tuple data
05CH	01H	System initialization bit mask	Tuple data
05EH	22H	CISTPL_FUNCE	Tuple code
060H	02H	TPL_LINK	Tuple link
062H	01H	Type of extended data	Tuple data
064H	01H	Function information	Tuple data
066H	22H	CISTPL_FUNCE	Tuple code
068H	03H	TPL_LINK	Tuple link
06AH	02H	Type of extended data	Tuple data
06CH	0CH	Function information	Tuple data
06EH	0FH	Function information	Tuple data
070H	1AH	CISTPL_CONFIG	Tuple code
072H	05H	TPL_LINK	Tuple link
074H	01H	Size field	Tuple data
076H	03H	Index number of last entry	Tuple data
078H	00H	Configuration register base address (Low)	Tuple data
07AH	02H	Configuration register base address (High)	Tuple data
07CH	0FH	Configuration register present mask	Tuple data
07EH	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
080H	08H	TPL_LINK	Tuple link

Address	Data	Description of Contents	CIS Function
082H	C0H	Configuration Index Byte	Tuple data
084H	C0H	Interface Descriptor	Tuple data
086H	A1H	Feature Select	Tuple data
088H	01H	Vcc Selection Byte	Tuple data
HA80	55H	Nom V Parameter	Tuple data
08CH	08H	Memory length (256 byte pages)	Tuple data
08EH	00H	Memory length (256 byte pages)	Tuple data
090H	20H	Misc features	Tuple data
092H	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
094H	06H	TPL_LINK	Tuple link
096H	00H	Configuration Index Byte	Tuple data
098H	01H	Feature Select	Tuple data
09AH	21H	Vcc Selection Byte	Tuple data
09CH	B5H	Nom V Parameter	Tuple data
09EH	1EH	Nom V Parameter	Tuple data
0A0H	4DH	Peak I Parameter	Tuple data
0A2H	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
0A4H	0AH	TPL_LINK	Tuple link
0A6H	C1H	Configuration Index Byte	Tuple data
0A8H	41H	Interface Descriptor	Tuple data
0AAH	99H	Feature Select	Tuple data
0ACH	01H	Vcc Selection Byte	Tuple data
0AEH	55H	Nom V Parameter	Tuple data
0B0H	64H	I/O Parameter	Tuple data
0B2H	F0H	IRQ parameter	Tuple data
0B4H	FFH	IRQ request mask	Tuple data
0B6H	FFH	IRQ request mask	Tuple data
0B8H	20H	Misc features	Tuple data
0BAH	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
0BCH	06H	TPL_LINK	Tuple link
0BEH	01H	Configuration Index Byte	Tuple data
0C0H	01H	Feature Select	Tuple data
0C2H	21H	Vcc Selection Byte	Tuple data
0C4H	B5H	Nom V Parameter	Tuple data

Address	Data	Description of Contents	CIS Function
0C6H	1EH	Nom V Parameter	Tuple data
0C8H	4DH	Peak I parameter	Tuple data
0CAH	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
0CCH	0FH	TPL_LINK	Tuple link
0CEH	C2H	Configuration Index Byte	Tuple data
0D0H	41H	Interface Descriptor	Tuple data
0D2H	99H	Feature Select	Tuple data
0D4H	01H	Vcc Selection Byte	Tuple data
0D6H	55H	Nom V Parameter	Tuple data
0D8H	EAH	I/O parameter	Tuple data
0DAH	61H	I/O range length and size	Tuple data
0DCH	F0H	Base address	Tuple data
0DEH	01H	Base address	Tuple data
0E0H	07H	Address length	Tuple data
0E2H	F6H	Base address	Tuple data
0E4H	03H	Base address	Tuple data
0E6H	01H	Address length	Tuple data
0E8H	EEH	IRQ parameter	Tuple data
0EAH	20H	Misc features	Tuple data
0ECH	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
0EEH	06H	TPL_LINK	Tuple link
0F0H	02H	Configuration Index Byte	Tuple data
0F2H	01H	Feature Select	Tuple data
0F4H	21H	Vcc Selection Byte	Tuple data
0F6H	B5H	Nom V Parameter	Tuple data
0F8H	1EH	Nom V Parameter	Tuple data
0FAH	4DH	Peak I Parameter	Tuple data
0FCH	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
0FEH	0FH	TPL_LINK	Tuple link
100H	СЗН	Configuration Index Byte	Tuple data
102H	41H	Interface Descriptor	Tuple data
104H	99H	Feature Select	Tuple data
106H	01H	Vcc Selection Byte	Tuple data
108H	55H	Nom V Parameter	Tuple data

Address	Data	Description of Contents	CIS Function
10AH	EAH	I/O parameter	Tuple data
10CH	61H	I/O range length and size	Tuple data
10EH	70H	Base address	Tuple data
110H	01H	Base address	Tuple data
112H	07H	Address length	Tuple data
114H	76H	Base address	Tuple code
116H	03H	Base address	Tuple link
118H	01H	Address length	Tuple data
11AH	EEH	IRQ parameter	Tuple data
11CH	20H	Misc features	Tuple data
11EH	1BH	CISTPL_CFTABLE_ENTRY	Tuple code
120H	06H	TPL_LINK	Tuple link
122H	03H	Configuration Index Byte	Tuple data
124H	01H	Feature Select	Tuple data
126H	21H	Vcc Selection Byte	Tuple data
128H	B5H	Nom V Parameter	Tuple data
12AH	1EH	Nom V Parameter	Tuple data
12CH	4DH	Peak I Parameter	Tuple data
12EH	14H	CISTPL_NO_LINK	Tuple code
130H	00H	TPL_LINK	Tuple link
132H	FFH	CISTPL_END	End of Tuple
134H	FFH	CISTPL_END	End of Tuple
136H	FFH	CISTPL_END	End of Tuple
138H	FFH	CISTPL_END	End of Tuple
13AH	FFH	CISTPL_END	End of Tuple

5.4. SMART Command Support

CompactFlash™ Card series supports SMART command set and define some vendor specific data to report spare/bad block number in each memory management unit. Users can get the data by "Read Data" command.

SMART Feature Register Values			
D0h	Read Data	D4h	Execute OFF-LINE Immediate
D1h	Read Attribute Threshold	D8h	Enable SMART Operations
D2h	Enable/Disable Auto save	D9h	Disable SMART Operations
D3h	Save Attribute Values	DAh	Return Status

Notes: If reserved size below the Threshold, the status can be read from Cylinder register by Return Status command (DAh).

SMART Data Structure (READ DATA (D0h))

0-1 X Revision code 2-361 X Vendor specific 362 V Off line data collection status 363 X Self-test execution status byte 364-365 V Total time in seconds to complete off-line data collection activity 366 X Vendor specific 367 F Off-line data collection capability 368-369 F SMART capability Error logging capability 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F/V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0-n) 397+(n*6) V MU number	BYTE	F/V	Description
2-361 X Vendor specific 362 V Off line data collection status 363 X Self-test execution status byte 364-365 V Total time in seconds to complete off-line data collection activity 366 X Vendor specific 367 F Off-line data collection capability 368-369 F SMART capability Error logging capability 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F/V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number		-	Description
362 V Off line data collection status 363 X Self-test execution status byte 364-365 V Total time in seconds to complete off-line data collection activity 366 X Vendor specific 367 F Off-line data collection capability 368-369 F SMART capability Error logging capability 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F/V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	0-1	Х	Revision code
363 X Self-test execution status byte 364-365 V Total time in seconds to complete off-line data collection activity 366 X Vendor specific 367 F Off-line data collection capability 368-369 F SMART capability 370 F 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F / V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	2-361	Χ	Vendor specific
364-365 V Total time in seconds to complete off-line data collection activity 366 X Vendor specific 367 F Off-line data collection capability 368-369 F SMART capability Error logging capability 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F / V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	362	V	Off line data collection status
366 X Vendor specific 367 F Off-line data collection capability 368-369 F SMART capability 370 F 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F/V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	363	X	Self-test execution status byte
F Off-line data collection capability 368-369 F SMART capability Error logging capability 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F/V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	364-365	V	Total time in seconds to complete off-line data collection activity
368-369 F SMART capability Error logging capability 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F / V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	366	X	Vendor specific
Error logging capability 7-1 Reserved 0 1=Device error logging supported 371 X Vendor specific BYTE F / V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	367	F	Off-line data collection capability
F 7-1 Reserved 0 1=Device error logging supported X Vendor specific BYTE F / V Description F Short self-test routine recommended polling time (in minutes) F Extended self-test routine recommended polling time (in minutes) F Conveyance self-test routine recommended polling time (in minutes) R Reserved R Reserved R Reserved W Number of MU in device (0~n) MU number	368-369	F	SMART capability
0 1=Device error logging supported X Vendor specific BYTE F / V Description Short self-test routine recommended polling time (in minutes) F Short self-test routine recommended polling time (in minutes) F Extended self-test routine recommended polling time (in minutes) F Conveyance self-test routine recommended polling time (in minutes) R Reserved R Reserved F Firmware Version/Date Code Number of MU in device (0~n) MU number			Error logging capability
371 X Vendor specific BYTE F / V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	370	F	7-1 Reserved
BYTE F / V Description 372 F Short self-test routine recommended polling time (in minutes) 373 F Extended self-test routine recommended polling time (in minutes) 374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number			0 1=Device error logging supported
F Short self-test routine recommended polling time (in minutes) F Extended self-test routine recommended polling time (in minutes) Conveyance self-test routine recommended polling time (in minutes) Reserved Reserved Firmware Version/Date Code Number of MU in device (0~n) MU number	371	Χ	Vendor specific
F Extended self-test routine recommended polling time (in minutes) Conveyance self-test routine recommended polling time (in minutes) Reserved Firmware Version/Date Code Number of MU in device (0~n) MU number	BYTE	F/V	Description
374 F Conveyance self-test routine recommended polling time (in minutes) 375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	372	F	Short self-test routine recommended polling time (in minutes)
375-385 R Reserved 386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	373	F	Extended self-test routine recommended polling time (in minutes)
386-395 F Firmware Version/Date Code 396 V Number of MU in device (0~n) 397+(n*6) V MU number	374	F	Conveyance self-test routine recommended polling time (in minutes)
396 V Number of MU in device (0~n) 397+(n*6) V MU number	375-385	R	Reserved
397+(n*6) V MU number	386-395	F	Firmware Version/Date Code
	396	V	Number of MU in device (0~n)
308+(n*6) // MI I data block	397+(n*6)	V	MU number
190T(II 0) V IVIO data block	398+(n*6)	V	MU data block
400+(n*6) V MU spare block	400+(n*6)	V	MU spare block

401+(n*6)	V	Init. Bad block
402+(n*6)	V	Run time Bad block information
511	V	Data structure checksum

Notes:

F = the content of the byte is fixed and does not change.

V = the content of the byte is variable and may change depending on the state of the device or the commands executed by the device.

X = the content of the byte is vendor specific and may be fixed or variable.

R = the content of the byte is reserved and shall be zero.

N = *Nth Management Unit*

* 4 Byte value: [MSB] [2] [1] [LSB]

6. ELECTRICAL SPECIFICATION

6.1. Electrical Specification

The following table defines all D.C. Characteristics for the CompactFlash™ Series. The conditions are:

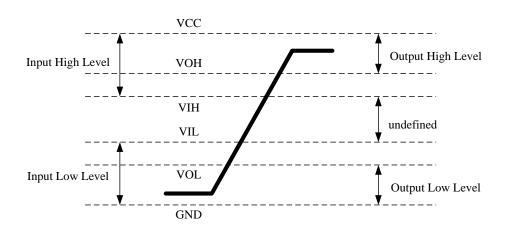
Commercial Temperature Product				
V _{CC} = 5V ±10%				
$V_{CC} = 3.3V \pm 5\%$				

Ta = 0° C to 70° C

6.2. Power Pin Description

Pin Name	1/0	Description
V_{CCk}	Power	Host V _{CC}
V _{CC} 3.3V	Power	3.3V V _{CC}
GND	Power	GND

6.3. Absolute Maximum Rating


6.3.1. CompactFlash interface I/O at 5.0V

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Power Supply	4.5	5.5	V
V _{OH}	Output Voltage High Level	V _{CC} -0.8		V
V_{OL}	Output Voltage Low Level		0.8	V
V_{IH}	Input Voltage High Level	2.92		V
V_{IL}	Input Voltage Low Level		1.7	V
T _{OPR-W}	Operating temperature for wide grade	-40	+85	°C
T _{OPR-S}	Operating temperature for standard grade	0	+70	°C
T _{STG}	Storage temperature	-40	125	°C

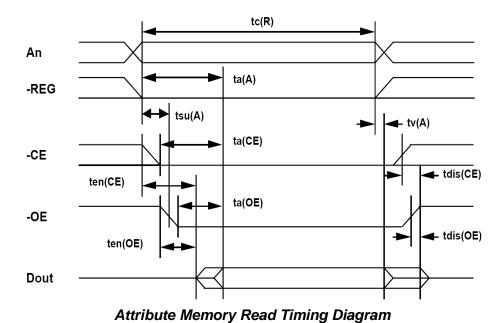
6.3.2. CompactFlash interface I/O at 3.3V

Symbol	Parameter	Min.	Max.	Units
Vcc	Power Supply	2.97	3.63	V
V _{OH}	Output Voltage High Level	V _{CC} -0.8		V
V_{OL}	Output Voltage Low Level		0.8	V
V _{IH}	Input Voltage High Level	2.05		V
VIL	Input Voltage Low Level		1.25	V
T _{OPR-W}	Operating Temperature For Wide Grade	-40	+85	°C
T _{OPR-S}	Operating Temperature For Standard Grade	0	+70	°C
T _{STG}	Storage Temperature	-40	125	°C

6.3.3. The I/O pins other than CompactFlash interface

Symbol	Parameter	Min.	Max.	Unit	Remark
Vcc	Supply Voltage	2.7	3.6	V	
V _{OH}	High level output voltage	2.4		V	
V _{OL}	Low level output voltage		0.4	V	
M	Lligh level input valtage	2.0		V	Non-Schmitt trigger
V _{IH}	High level input voltage	1.4	2.0	V	Schmitt trigger3
M	Low lovel input voltage		0.8	V	Non-Schmitt trigger
V _{IL}	Low level input voltage	0.8	1.2	V	Schmitt trigger3

6.3.4. Recommended Operating Conditions


Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Power Supply Voltage	3.0	3.3	3.6	V
V _{IN}	Input Voltage	-0.3	-	V _{CC} +0.3	V
Vccq	Power Supply for Host I/O	3.0	-	5.5	V
V _{IN_Host}	Input Voltage for Host I/O	-0.3	-	Vccq +0.3	V

6.4. AC Characteristics

6.4.1. Attribute Memory Read Timing

Speed Vers	sion		300 ns	
Symbol	Item	IEEE Symbol	Min	Max
tc(R)	Read Cycle Time	tAVAV	300	
ta(A)	Address Access Time	tAVQV		300
ta(CE)	Card Enable Access Time	tELQV		300
ta(OE)	Output Enable Access Time	tGLQV		150
tdis(CE)	Output Disable Time from CE	tEHQZ		100
tdis(OE)	Output Disable Time from OE	tGHQZ		100
tsu (A)	Address Setup Time	tAVGL	30	
ten(CE)	Output Enable Time from CE	tELQNZ	5	
ten(OE)	Output Enable Time from OE	tGLQNZ	5	
tv(A)	Data Valid from Address Change	tAXQX	0	

, , ,

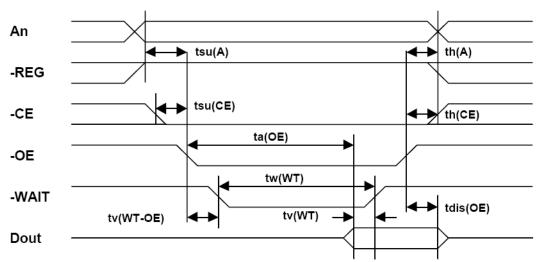
6.4.2. Configuration Register (Attribute Memory) Write Timing

Speed Version	n		250 ns				
Symbol	Item	Min	Max				
tc(W)	Write Cycle Time	t _{AVAV}	250				
tw(WE)	Write Pulse Width	t _{WLWH}	150				
tsu(A)	Address Setup Time	t _{AVWL}	30				
trec(WE)	Write Recovery Time	twmax	30				
tsu(D-WEH)	Data Setup Time for WE	t _{DVWH}	80				
th(D)	Data Hold Time	twmdx	30				

Note:

All times are in nanoseconds. Din signifies data provided by the system to the CompactFlash Storage Card or CF+ Card.

Configuration Register (Attribute Memory) Write Timing Diagram



6.4.3. Common Memory Read Timing

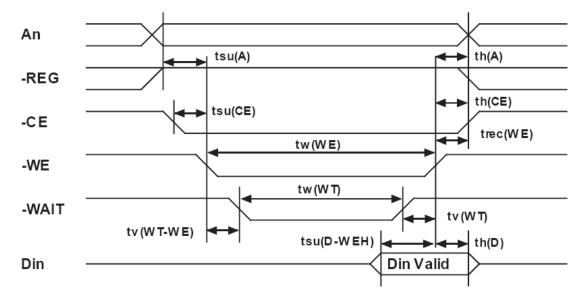
Cycle Time N	Mode:		250 n	ıs	120 r	ıs	100 r	ns	80 ns	
Symbol	Item	IEEE Symbol	Min	Max	Min	Max	Min	Max	Min	Max
ta(OE)	Output Enable Access Time	t _{GLQV}		125		60		50		45
Tdis(OE)	Output Disable Time from OE	t _{GHQZ}		100		60		50		45
tsu(A)	Address Setup Time	t _{AVGL}	30		15		10		10	
th(A)	Address Hold Time	t _{GHAX}	20		15		15		10	
tsu(CE)	CE Setup before OE	t _{ELGL}	0		0		0		0	
th(CE)	CE Hold following OE	t _{GHEH}	20		15		15		10	
tv(WT-OE)	Wait Delay Falling from OE	t _{GLWTV}		35		35		35		na ¹
tv(WT)	Data Setup for Wait Release	t _{QVWTH}		0		0		0		na ¹
tw(WT)	Wait Width Time ²	t _{WTLWTH}		350		350		350		na¹

Note:

- 1) -WAIT is not supported in this mode.
- 2) The maximum load on -WAIT is 1 LSTTL with 50 pF (40pF below 120nsec Cycle Time) total load. All times are in nanoseconds. Dout signifies data provided by the CompactFlash Storage Card or CF+Card to the system. The -WAIT signal may be ignored if the -OE cycle to cycle time is greater than the Wait Width time. The Max Wait Width time can be determined from the Card Information Structure. The Wait Width time meets the PCMCIA specification of 12µs but is intentionally less in this specification.

Common Memory Read Timing Diagram

6.4.4. Common Memory Write Timing


Cycle Time N	Mode:		250 n	S	120 n	S	100 n	S	80 ns	
Symbol	Item	IEEE Symbol	Min	Max	Min	Max	Min	Max	Min	Max
tsu (D-WEH)	Data Setup before WE	t _{DVW} н	80		50		40		30	
th (D)	Data Hold following WE	t _{WMDX}	30		15		10		10	
tw (WE)	WE Pulse Width	t _{WLWH}	150		70		60		55	
tsu (A)	Address Setup Time	t _{AVWL}	30		15		10		10	
tsu (CE)	CE Setup before WE	t _{ELWL}	0		0		0		0	
trec (WE)	Write Recovery Time	t _{WMAX}	30		15		15		15	
th (A)	Address Hold Time	t _{GHAX}	20		15		15		15	
th (CE)	CE Hold following WE	t _{GHEH}	20		15		15		10	
tv (WT-WE)	Wait Delay Falling from WE	t _{WLWTV}		35		35		35		na¹
tv (WT)	WE High from Wait Release	twтнwн	0		0		0		na¹	
tw (WT)	Wait Width Time ²	twtlwth		350		350		350		na¹

Note:

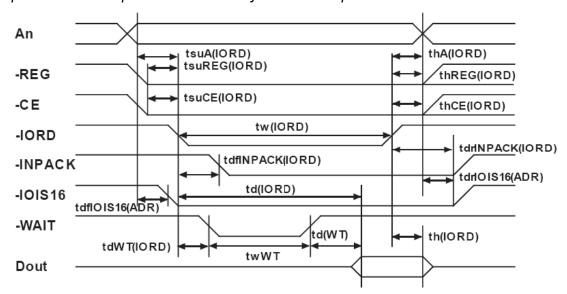
- 1) -WAIT is not supported in this mode.
- 2) The maximum load on -WAIT is 1 LSTTL with 50 pF (40pF below 120nsec Cycle Time) total load. All times are in nanoseconds. Din signifies data provided by the system to the CompactFlash Storage Card. The -WAIT signal may be ignored if the -WE cycle to cycle time is greater than the Wait Width time. The Max Wait Width time can be determined from the Card Information Structure. The Wait Width time meets the PCMCIA specification of 12µs but is intentionally less in this specification.

CPI Technologies, Inc.

Common Memory Write Timing Diagram

6.4.5. I/O Read Timing

Cycle Time I	Mode:		250 ns	3	120 ns	3	100 ns	3	80 ns	
Symbol	Item	IEEE Symbol	Min	Max	Min	Max	Min	Max	Min	Max
Td (IORD)	Data Delay after IORD	tIGLQV		100		50		45		45
Th (IORD)	Data Hold following IORD	tIGHQX	0		5		5		5	
Tw (IORD)	IORD Width Time	tIGLIGH	165		70		65		55	
tsuA (IORD)	Address Setup before IORD	tAVIGL	70		25		25		15	
thA (IORD)	Address Hold following IORD	tIGHAX	20		10		10		10	
tsuCE (IORD)	CE Setup before IORD	tELIGL	5		5		5		5	
thCE (IORD)	CE Hold following IORD	tIGHEH	20		10		10		10	
tsuREG (IORD)	REG Setup before IORD	tRGLIG L	5		5		5		5	
thREG (IORD)	REG Hold following IORD	tIGHRG H	0		0		0		0	
tdfINPACK (IORD)	INPACK Delay Falling from IORD3	tlGLIAL	0	45	0	na1	0	na1	0	na1
tdrINPACK (IORD)	INPACK Delay Rising from IORD3	tIGHIAH		45		na1		na1		na1
tdfIOIS16 (ADR)	IOIS16 Delay Falling from Address3	tAVISL		35		na1		na1		na1
tdrlOIS16 (ADR)	IOIS16 Delay Rising from Address3	tAVISH		35		na1		na1		na1



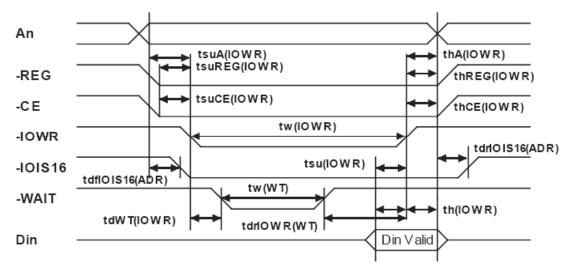
CPI Technologies, Inc.

Cycle Tim	Cycle Time Mode		250	250 ns) ns	100) ns	80	ns
Symbol	Item	IEEE Symbol	Min	Max	Min	Max	Min	Max	Min	Max
tdWT (IORD)	Wait Delay Falling from IORD3	tlGLWTL		35		35		35		na2
Td (WT)	Data Delay from Wait Rising3	tWTHQV		0		0		0		na2
Tw (WT)	Wait Width Time3	tWTLWTH		350		350		350		na2

Note:

- (1) -IOIS16 and -INPACK are not supported in this mode.
- (2) -WAIT is not supported in this mode.
- (3) Maximum load on -WAIT, -INPACK and -IOIS16 is 1 LSTTL with 50 pF (40pF below 120nsec Cycle Time) total load. All times are in nanoseconds. Minimum time from -WAIT high to -IORD high is 0 nsec, but minimum -IORD width shall still be met. Dout signifies data provided by the CompactFlash Storage Card or CF+ Card to the system. Wait Width time meets PCMCIA specification of 12µs but is intentionally less in this spec.

I/O Read Timing Diagram


6.4.6. I/O Write Timing

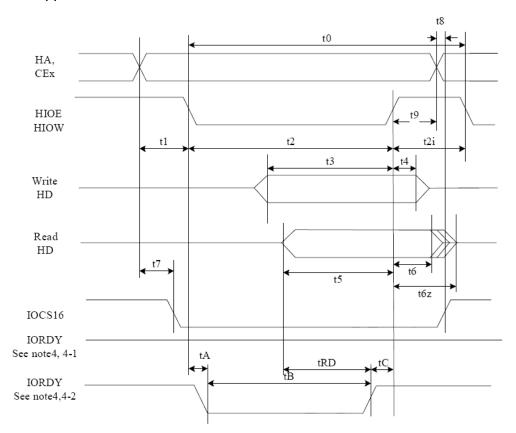
	Cycle Time Mode		250) ns	120) ns	100) ns	80	ns
Symbol	ltem	IEEE Symbol	Min	Max	Min	Max	Min	Max	Min	Max
Tsu (IOWR)	Data Setup before IOWR	tDVIWH	60		20		20		15	
Th (IOWR)	Data Hold following IOWR	tIWHDX	30		10		5		5	
Tw (IOWR)	IOWR Width Time	tlWLlWH	165		70		65		55	
tsuA (IOWR)	Address Setup before IOWR	tAVIWL	70		25		25		15	
thA (IOWR)	Address Hold following IOWR	tlWHAX	20		20		10		10	
tsuCE (IOWR)	CE Setup before IOWR	tELIWL	5		5		5		5	
thCE (IOWR)	CE Hold following IOWR	tlWHEH	20		20		10		10	
tsuREG (IOWR)	REG Setup before IOWR	tRGLIWL	5		5		5		5	
thREG (IOWR)	REG Hold following IOWR	tlWHRGH	0		0		0		0	
tdflOIS16 (ADR)	IOIS16 Delay Falling from Address ³	tAVISL		35		na¹		na¹		na¹
tdrlOIS16 (ADR)	IOIS16 Delay Rising from Address ³	tAVISH		35		na¹		na¹		na¹
tdWT (IOWR)	Wait Delay Falling from IOWR ³	tIWLWTL		35		35		35		na²
tdrIOWR (WT)	IOWR high from Wait high ³	tWTJIWH	0		0		0		na²	
Tw (WT)	Wait Width Time ³	tWTLWTH		350		350		350		na²

Note:

- 1) -IOIS16 and -INPACK are not supported in this mode.
- 2) -WAIT is not supported in this mode.
- 3) The maximum load on -WAIT, -INPACK, and -IOIS16 is 1 LSTTL with 50 pF (40pF below 120nsec Cycle Time) total load. All times are in nanoseconds. Minimum time from -WAIT high to -IOWR high is 0 nsec, but minimum -IOWR width shall still be met. Din signifies data provided by the system to the CompactFlash Storage Card or CF+ Card. The Wait Width time meets the PCMCIA specification of 12 µs but is intentionally less in this specification.

I/O Write Timing Diagram

6.4.7. True IDE PIO Mode Read/Write Timing


	Itom	Mode	Mode	Mode	Mode	Mode	Mode	Mode
	Item	0	1	2	3	4	5	6
t ₀	Cycle time (min) ¹	600	383	240	180	120	100	80
t ₁	Address Valid to HIOE/HIOW setup (min)	70	50	30	30	25	15	10
t ₂	HIOE/HIOW (min) ¹	165	125	100	80	70	65	55
t ₂	HIOE/HIOW (min) Register (8 bit) ¹	290	290	290	80	70	65	55
t _{2i}	HIOE/HIOW recovery time (min) ¹	-	-	-	70	25	25	20
t ₃	HIOW data setup (min)	60	45	30	30	20	20	15
t ₄	HIOW data hold (min)	30	20	15	10	10	5	5
t ₅	HIOE data setup (min)	50	35	20	20	20	15	10
t ₆	HIOE data hold (min)	5	5	5	5	5	5	5
t _{6Z}	HIOE data tristate (max) ²	30	30	30	30	30	20	20
t ₇	Address valid to IOCS16 assertion (max) ⁴	90	50	40	n/a	n/a	n/a	n/a
t ₈	Address valid to IOCS16 released (max) ⁴	60	45	30	n/a	n/a	n/a	n/a
t ₉	HIOE/HIOW to address valid hold	20	15	10	10	10	10	10
t _{RD}	Read Data Valid to IORDY active (min), if IORDY initially low after tA	0	0	0	0	0	0	0
t _A	IORDY Setup time ³	35	35	35	35	35	na ⁵	na ⁵
t _B	IORDY Pulse Width (max)	1250	1250	1250	1250	1250	na ⁵	na ⁵
t _C	IORDY assertion to release (max)	5	5	5	5	5	na ⁵	na ⁵

Note:

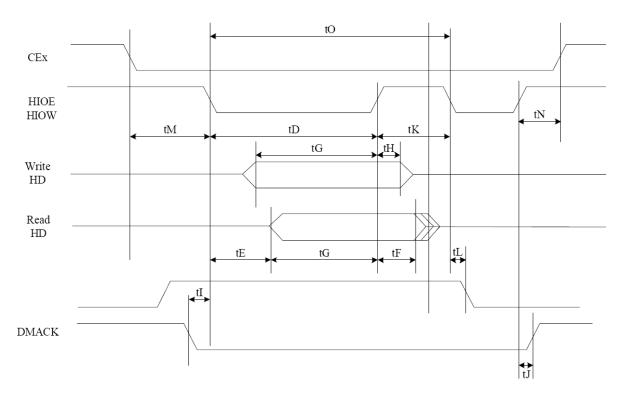
All timings are in nanoseconds. The maximum load on -IOCS16 is 1 LSTTL with a 50 pF (40pF below 120nsec Cycle Time) total load. All times are in nanoseconds. Minimum time from -IORDY high to -IORD high is 0 nsec, but minimum -IORD width shall still be met.

- 1) to is the minimum total cycle time, to is the minimum command active time, and to is the minimum command recovery time or command inactive time. The actual cycle time equals the sum of the actual command active time and the actual command inactive time. The three timing requirements of to, to, and to is shall be met. The minimum total cycle time requirement is greater than the sum of to and to implementation can lengthen either or both to or to ensure that to is equal to or greater than the value reported in the device's identify device data. A CompactFlash Storage Card implementation shall support any legal host implementation.
- 2) This parameter specifies the time from the negation edge of -IORD to the time that the data bus is no longer driven by the CompactFlash Storage Card (tri-state).
- 3) The delay from the activation of -IORD or -IOWR until the state of IORDY is first sampled. If IORDY is inactive then the host shall wait until IORDY is active before the PIO cycle can be completed. If the CompactFlash Storage Card is not driving IORDY negated at tA after the activation of -IORD or -IOWR, then t5 shall be met and tRD is not applicable. If the CompactFlash Storage Card is driving IORDY negated at the time tA after the activation of -IORD or -IOWR, then tRD shall be met and t5 is not applicable.
- 4) t7 and t8 apply only to modes 0, 1 and 2. For other modes, this signal is not valid.
- 5) IORDY is not supported in this mode.

True IDE PIO Mode Timing Diagram

Notes:

- (1) Device address consists of CE0, CE1, and HA[2:0]
- (2) Data consists of HD[15:00] (16-bit) or HD[7:0] (8 bit)
- (3) IOCS16 is shown for PIO modes 0, 1 and 2. For other modes, this signal is ignored.
- (4) The negation of IORDY by the device is used to extend the PIO cycle. The determination of whether the cycle is to be extended is made by the host after t_A from the assertion of HIOE or HIOW. The assertion and negation of IORDY is described in the following three cases:
- (4-1) Device never negates IORDY: No wait is generated.
- (4-2) Device drives IORDY low before t_A: wait generated. The cycle completes after IORDY is reasserted. For cycles where a wait is generated and HIOE is asserted, the device shall place read data on D15-D00 for t_{RD} before causing IORDY to be asserted.


6.4.8. True IDE Multiword DMA Mode Read/Write Timing

	Item	Mode	Mode	Mode	Mode	Mode	Not
	item	0	1	2	3	4	е
to	Cycle time (min)	480	150	120	100	80	1
t_D	HIOE / HIOW asserted width (min)	215	80	70	65	55	1
t _E	HIOE data access (max)	150	60	50	50	45	
t _F	HIOE data hold (min)	5	5	5	5	5	
t _G	HIOE/HIOW data setup (min)	100	30	20	15	10	
t _H	HIOW data hold (min)	20	15	10	5	5	
+.	DMACK(HREG) to HIOE/HIOW setup	0	0	0	0	0	
tı	(min)	U	U	U	U	U	
tJ	HIOE / HIOW to -DMACK hold (min)	20	5	5	5	5	
t _{KR}	HIOE negated width (min)	50	50	25	25	20	1
t _{KW}	HIOW negated width (min)	215	50	25	25	20	1
t _{LR}	HIOE to DMARQ delay (max)	120	40	35	35	35	
t _{LW}	HIOW to DMARQ delay (max)	40	40	35	35	35	
t _M	CEx valid to HIOE / HIOW	50	30	25	10	5	
t _N	CEx hold	15	10	10	10	10	

Notes:

to is the minimum total cycle time and tD is the minimum command active time, while tKR and tKW are the minimum command recovery time or command inactive time for input and output cycles respectively. The actual cycle time equals the sum of the actual command active time and the actual command inactive time. The three timing requirements of t0, tD, tKR, and tKW shall be met. The minimum total cycle time requirement is greater than the sum of tD and tKR or tKW.for input and output cycles respectively. This means a host implementation can lengthen either or both of tD and either of tKR, and tKW as needed to ensure that t0 is equal to or greater than the value reported in the device's identify device data. A CompactFlash Storage Card implementation shall support any legal host implementation.

True IDE Multiword DMA Mode Read/Write Timing Diagram

Notes:

- 1) If the Card cannot sustain continuous, minimum cycle time DMA transfers, it may negate DMARQ within the time specified from the start of a DMA transfer cycle to suspend the DMA transfers in progress and reassert the signal at a later time to continue the DMA operation.
- 2) This signal may be negated by the host to suspend the DMA transfer in progress.

6.4.9. Ultra DMA Signal Usage In Each Interface Mode

Signal	Туре	(Non UDMA PC CARD MEM MEM MODE) MODE UDMA		PC CARD IO MODE	TRUE IDE MODE	
DMARQ	Output	,		-DMARQ	DMARQ	
HREG	Input	(-REG)	-DMACK	DMACK	-DMACK	
HIOW	Input	(-IOWR)	STOP1	STOP1	STOP ¹	
ШОГ	loo.ut	(JODD)	-HDMARDY(R) 1,2	-HDMARDY(R) 1, 2	-HDMARDY(R) 1, 2	
HIOE Input		(-IORD)	HSTROBE(W) 1, 3, 4	HSTROBE(W) 1, 3, 4	HSTROBE(W) ^{1, 3, 4}	
IORDY Outpu		() () () () ()	-DDMARDY(W) 1, 3	-DDMARDY(W) 1,3	-DDMARDY(W) 1, 3	
		(-WAIT)	DSTROBE(R) 1.2.4	DSTROBE(R) 1.2.4	DSTROBE(R) 1.2.4	
HD[15:00]	Bidir	(D[15:00])	D[15:00]	D[15:00]	D[15:00]	
HA[10:00]	Input	(A[10:00])	A[10:00]	A[10:00]	A[02:00] ⁵	
CSEL	Input	(-CSEL)	-CSEL	-CSEL	-CSEL	
HIRQ	Output	(READY)	READY	-INTRQ	INTRQ	
CE1 CE2	Input	(-CE1) (-CE2)	-CE1 -CE2	-CE1 -CE2	-CS0 -CS1	

Notes:

- 1) The UDMA interpretation of this signal is valid only during an Ultra DMA data burst.
- 2) The UDMA interpretation of this signal is valid only during and Ultra DMA data burst during a DMA Read command.
- 3) The UDMA interpretation of this signal is valid only during an Ultra DMA data burst during a DMA Write command.
- 4) The HSTROBE and DSTROBE signals are active on both the rising and the falling edge.
- 5) Address lines 03 through 10 are not used in True IDE mode.

6.4.10. Ultra DMA Data Burst Timing Requirements

	UDM	A	UDM	Α	UDM	A	UDM	Ą	UDM	ΙA	UDM	A	
Name	Mode	0	Mode	1	Mode	2	Mode	3	Mode	e 4	Mode	5	Measure
Ivaille	Min	Max	Location ²										
t _{2CYCTYP}	240		160		120		90		60		40		Sender
tcyc	112		73		54		39		25		16.8		Note3
t _{2CYC}	230		153		115		86		57		38		Sender
t _{DS}	15.0		10.0		7.0		7.0		5.0		4.0		Recipient
t _{DH}	5.0		5.0		5.0		5.0		5.0		4.6		Recipient
t _{DVS}	70.0		48.0		31.0		20.0		6.7		4.8		Sender
t _{DVH}	6.2		6.2		6.2		6.2		6.2		4.8		Sender
t _{CS}	15.0		10.0		7.0		7.0		5.0		5.0		Device
t _{CH}	5.0		5.0		5.0		5.0		5.0		5.0		Device
t _{CVS}	70.0		48.0		31.0		20.0		6.7		10.0		Host
t _{CVH}	6.2		6.2		6.2		6.2		6.2		10.0		Host
t _{ZFS}	0		0		0		0		0		35		Device
t _{DZFS}	70.0		48.0		31.0		20.0		6.7		25		Sender
t _{FS}		230		200		170		130		120		90	Device
t _{LI}	0	150	0	150	0	150	0	100	0	100	0	75	Note4
t _{MLI}	20		20		20		20		20		20		Host
tuı	0		0		0		0		0		0		Host
t _{AZ}		10		10		10		10		10		10	Note5
t _{ZAH}	20		20		20		20		20		20		Host
t _{ZAD}	0		0		0		0		0		0		Device
t _{ENV}	20	70	20	70	20	70	20	55	20	55	20	50	Host
t _{RFS}		75		70		60		60		60		50	Sender
t _{RP}	160		125		100		100		100		85		Recipient
t _{IORDYZ}		20		20		20		20		20		20	Device
t _{ZIORDY}	0		0		0		0		0		0		Device
t _{ACK}	20		20		20		20		20		20		Host
t _{SS}	50		50		50		50		50		50		Sender

Notes:

All Timings in ns

- 1) All timing measurement switching points (low to high and high to low) shall be taken at 1.5 V.
- 2) All signal transitions for a timing parameter shall be measured at the connector specified in the measurement location column. For example, in the case of tRFS, both STROBE and –DMARDY transitions are measured at the sender connector.
- 3) The parameter tCYC shall be measured at the recipient's connector farthest from the sender.
- 4) The parameter tLI shall be measured at the connector of the sender or recipient that is responding to an incoming transition from the recipient or sender respectively. Both the incoming signal and the outgoing response shall be measured at the same connector.
- 5) The parameter tAZ shall be measured at the connector of the sender or recipient that is driving the bus but must release the bus to allow for a bus turnaround.
- 6) See the AC Timing requirements in Table 28: Ultra DMA AC Signal Requirements.

6.4.11. Ultra DMA Data Burst Timing Descriptions

Name	Comment	Notes				
t _{2CYCTYP}	Typical sustained average two cycle time					
t _{CYC}	Cycle time allowing for asymmetry and clock variations (from STROBE edge to STROBE edge)					
t _{2CYC}	Two cycle time allowing for clock variations (from rising edge to next rising edge or from falling edge next falling edge of STROBE)					
t _{DS}	Data setup time at recipient (from data valid until STROBE edge)	2				
t _{DH}	Data hold time at recipient (from STROBE edge until data may become invalid)	2				
t _{DVS}	Data valid setup time at sender (from data valid until STROBE edge)	3				
t _{DVH}	Data valid hold time at sender (from STROBE edge until data may become invalid)	3				
t _{CS}	CRC word setup time at device	2				
t _{CH}	CRC word hold time device	2				
t _{CVS}	CRC word valid setup time at host (from CRC valid until -DMACK negation)	3				
t _{CVH}	CRC word valid hold time at sender (from -DMACK negation until CRC may become invalid)	3				
t _{ZFS}	Time from STROBE output released-to-driving until the first transition of critical timing.					
t _{DZFS}	Time from data output released-to-driving until the first transition of critical timing.					
t _{FS}	First STROBE time (for device to first negate DSTROBE from STOP during a data in burst)					
t _{LI}	Limited interlock time	1				
t _{MLI}	Interlock time with minimum	1				
t _{UI}	Unlimited interlock time	1				
t _{AZ}	Maximum time allowed for output drivers to release (from asserted or negated)					
t _{ZAH}	Minimum delay time required for output					
t _{ZAD}	drivers to assert or negate (from released)					
t _{ENV}	Envelope time (from -DMACK to STOP and -HDMARDY during data in burst initiation and from DMACK to STOP during data out burst initiation)					
t _{RFS}	Ready-to-final-STROBE time (no STROBE edges shall be sent this long after negation of -DMARDY)					

Name	Comment	Notes
t _{RP}	Ready-to-pause time (that recipient shall wait to pause after negating -DMARDY)	
t _{IORDYZ}	Maximum time before releasing IORDY	
tziordy	Minimum time before driving IORDY	4
t _{ACK}	Setup and hold times for -DMACK (before assertion or negation)	
t _{SS}	Time from STROBE edge to negation of DMARQ or assertion of STOP	
	(when sender terminates a burst)	

Notes:

- (1) The parameters t_{UI} , t_{MLI} (in 6.4.17: Ultra DMA Data-In Burst Device Termination Timing and 6.4.18: Ultra DMA Data-In Burst Host Termination Timing), and t_{LI} indicate sender-to-recipient or recipient-to-sender interlocks, i.e., one agent (either sender or recipient) is waiting for the other agent to respond with a signal before proceeding. t_{UI} is an unlimited interlock that has no maximum time value. t_{MLI} is a limited time-out that has a defined maximum.
- (2) 80-conductor cabling (see ATA specification :Annex A) shall be required in order to meet setup (t_{DS} , t_{CS}) and hold (t_{DH} , t_{CH}) times in modes greater than 2.
- (3) Timing for t_{DVS}, t_{DVH}, t_{CVS} and t_{CVH} shall be met for lumped capacitive loads of 15 and 40 pF at the connector where the Data and STROBE signals have the same capacitive load value. Due to reflections on the cable, these timing measurements are not valid in a normally functioning system.
- 1) For all timing modes the parameter t_{ZIORDY} may be greater than t_{ENV} due to the fact that the host has a pull-up on IORDY- giving it a known state when released.

6.4.12. Ultra DMA Sender and Recipient IC Timing Requirements

	UDM	А	UDMA UDMA		A	UDM	IA	UDM	IA	UDM	IA	UDMA			
Name	Mode	0	0 Mode 1 Mo		Mode	Mode 2		Mode 3		Mode 4		Mode 5		Mode 6	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{DSIC}	14.7		9.7		6.8		2.3		4.8		2.3		2.3		
t _{DHIC}	4.8		4.8		4.8		2.8		4.8		2.8		2.8		
t _{DVSIC}	72.9		50.9		33.9		6.0		9.5		6.0		5.2		
t _{DVHIC}	9.0		9.0		9.0		6.0		9.0		6.0		5.2		
t _{DSIC}	Recipient IC data setup time (from data valid until STROBE edge) (see note 2)														
t _{DHIC}	Recipient IC data hold time (from STROBE edge until data may become invalid) (see														
	note 2)														
t _{DVSIC}	Sender IC data valid setup time (from data valid until STROBE edge) (see note 3)														
t _{DVHIC}	Sender IC data valid hold time (from STROBE edge until data may become invalid)														
	(see note 3)														

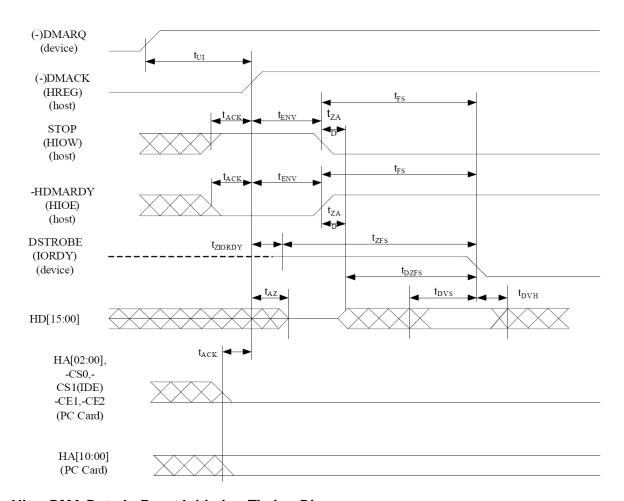
Notes:

- 1) All timing measurement switching points (low to high and high to low) shall be taken at 1.5 V.
- 2) The correct data value shall be captured by the recipient given input data with a slew rate of 0.4 V/ns rising and falling and the input STROBE with a slew rate of 0.4 V/ns rising and falling at tDSIC and tDHIC timing (as measured through 1.5 V).
- 3) The parameters tDVSIC and tDVHIC shall be met for lumped capacitive loads of 15 and 40 pF at the IC where all signals have the same capacitive load value. Noise that may couple onto the output signals from external sources has not been included in these values.

6.4.13. Ultra DMA AC Signal Requirements

Name	Comment	Min [V/ns]	Max [V/ns]	Notes
SRISE	Rising Edge Slew Rate for any signal		1.25	1
SFALL	Falling Edge Slew Rate for any signal		1.25	1

Notes:


1) The sender shall be tested while driving an 18 inch long, 80 conductor cable with PVC insulation material. The signal under test shall be cut at a test point so that it has not trace, cable or recipient loading after the test point. All other signals should remain connected through to the recipient. The test point may be located at any point between the sender's series termination resistor and one half inch or less of conductor exiting the connector. If the test point is on a cable conductor rather than the PCB, an adjacent ground conductor shall also be cut within one half inch of the connector.

The test load and test points should then be soldered directly to the exposed source side connectors. The test loads consist of a 15 pF or a 40 pF, 5%, 0.08 inch by 0.05 inch surface mount or smaller size capacitor from the test point to ground. Slew rates shall be met for both capacitor values.

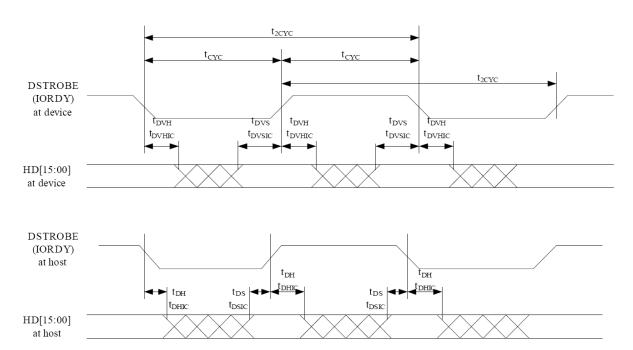
Measurements shall be taken at the test point using a <1 pF, >100 Kohm, 1 Ghz or faster probe and a 500 MHz or faster oscilloscope. The average rate shall be measured from 20% to 80% of the settled VOH level with data transitions at least 120 nsec apart. The settled VOH level shall be measured as the average output high level under the defined testing conditions from 100 nsec after 80% of a rising edge until 20% of the subsequent falling edge.

6.4.14. Ultra DMA Data-In Burst Initiation Timing

Ultra DMA Data-In Burst Initiation Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH.

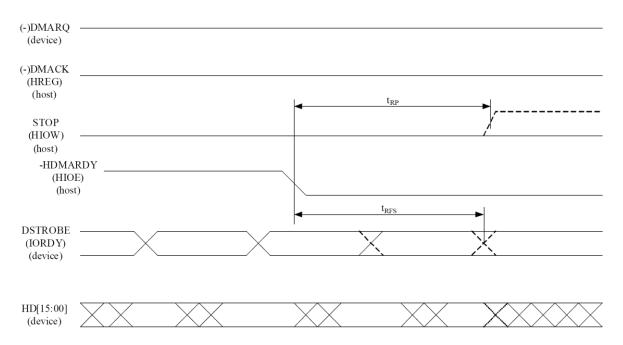
NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE


DIAGRAM.

Notes:

The definitions for the IORDY:-DDMARDY:DSTROBE, -IORD:-HDMARDY:HSTROBE, and -IOWR:STOP signal lines are not in effect until DMARQ and -DMACK are asserted. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00], -CE1 and -CE2 are PC Card mode signals. The Bus polarity of (-) DMACK and (-) DMARQ are dependent on interface mode active.

6.4.15. Sustained Ultra DMA Data-In Burst Timing

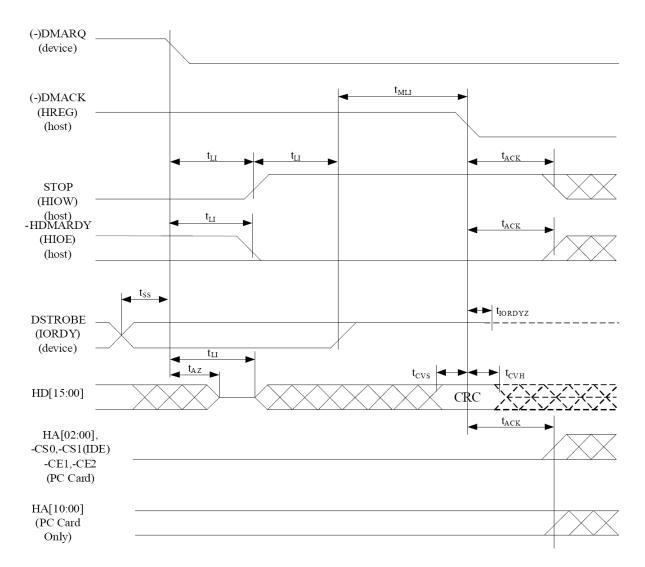

Sustained Ultra DMA Data-In Burst Timing Diagram

Notes:

HD[15:00] and DSTROBE signals are shown at both the host and the device to emphasize that cable settling time as well as cable propagation delay shall not allow the data signals to be considered stable at the host until some time after they are driven by the device.

6.4.16. Ultra DMA Data-In Burst Host Pause Timing

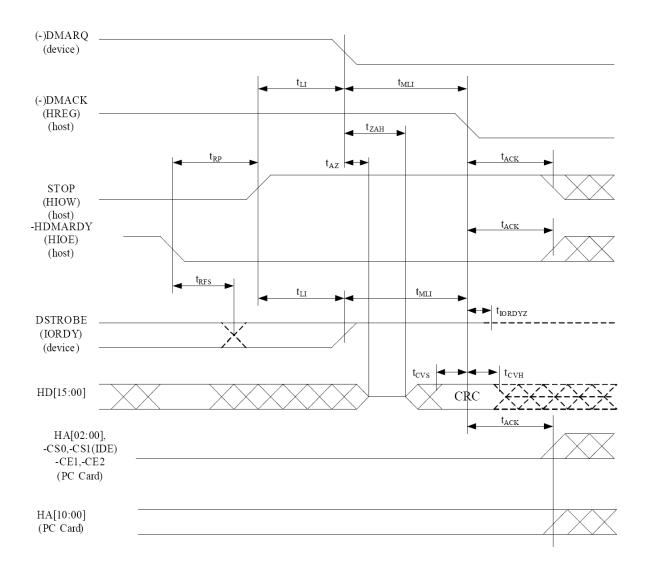
Ultra DMA Data-In Burst Host Pause Timing Diagram


All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

Notes:

- 1) The host may assert STOP to request termination of the Ultra DMA data burst no sooner than tRP after -HDMARDY is negated.
- 2) After negating -HDMARDY, the host may receive zero, one, two, or three more data words from the device.
- 3) The bus polarity of the (-) DMARQ and (-)DMACK signals is dependent on the active interface mode.

6.4.17. Ultra DMA Data-In Burst Device Termination Timing


Ultra DMA Data-In Burst Device Termination Timing Diagram

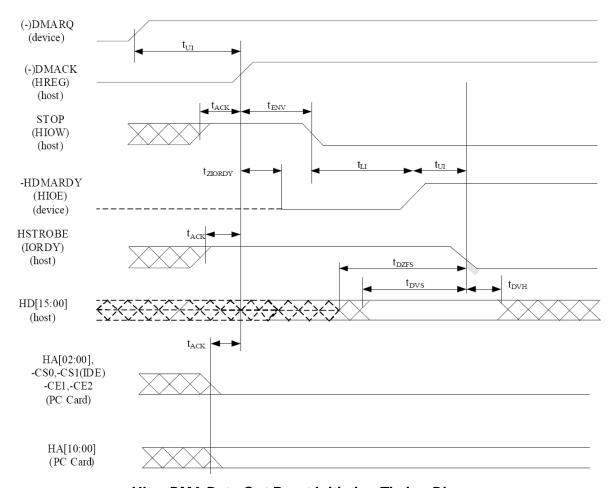
All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

Notes:

The definitions for the STOP, HDMARDY, and DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00], -CE1 and -CE2 are PC Card mode signals. The bus polarity of DMARQ and DMACK are dependent on the active interface mode.

6.4.18. Ultra DMA Data-In Burst Host Termination Timing

Ultra DMA Data-In Burst Host Termination Timing Diagram

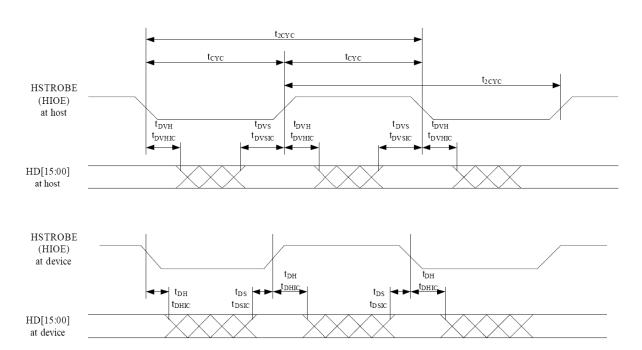

All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

Notes:

The definitions for the STOP, HDMARDY, and DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00],-CE1 and -CE2 are PC Card mode signal definitions. The bus polarity of DMARQ and DMACK depend on the active interface mode.

6.4.19. Ultra DMA Data-Out Burst Initiation Timing

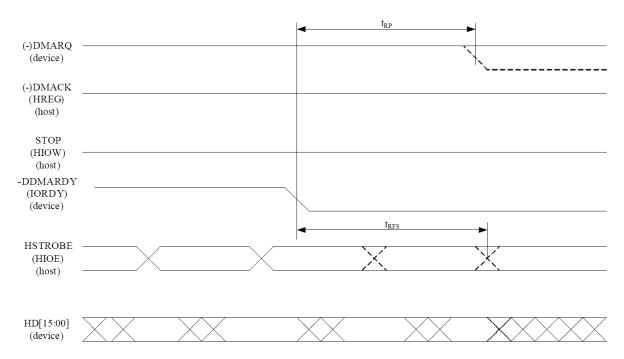
Ultra DMA Data-Out Burst Initiation Timing Diagram


All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

Note:

The definitions for the STOP, DDMARDY, and HSTROBE signal lines are not in effect until DMARQ and DMACK are asserted. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00], -CE1 and -CE2 are PC Card mode signal definitions. The bus polarity of DMARQ and DMACK depend on the active interface mode.

6.1.1. Sustained Ultra DMA Data-Out Burst Timing

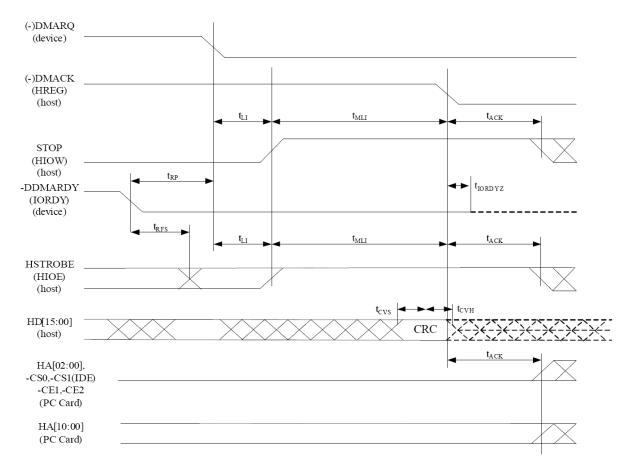

Sustained Ultra DMA Data-Out Burst Timing Diagram

Note:

Data (HD[15:00]) and HSTROBE signals are shown at both the device and the host to emphasize that cable settling time as well as cable propagation delay shall not allow the data signals to be considered stable at the device until some time after they are driven by the host.

6.4.20. Ultra DMA Data-Out Burst Device Pause Timing

Ultra DMA Data-Out Burst Device Pause Timing Diagram

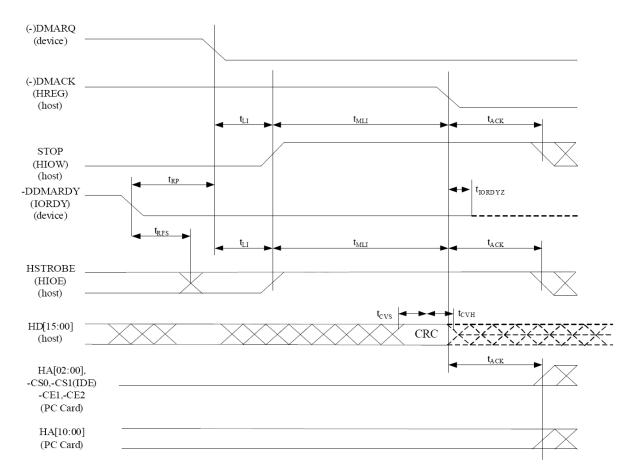

All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

Notes:

- 1) The device may negate DMARQ to request termination of the Ultra DMA data burst no sooner than tRP after -DDMARDY is negated.
- 2) After negating -DDMARDY, the device may receive zero, one, two, or three more data words from the host.
- 3) The bus polarity of DMARQ and DMACK depend on the active interface mode.

6.4.21. Ultra DMA Data-Out Burst Device Termination Timing

Ultra DMA Data-Out Burst Device Termination Timing Diagram


All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

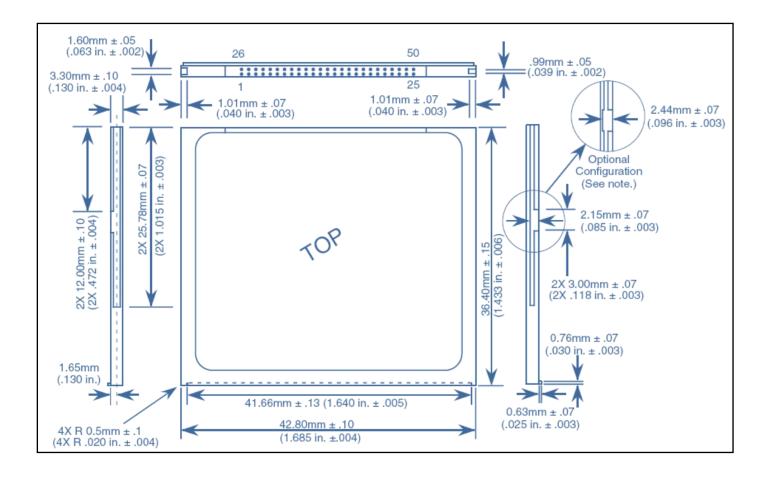
Note:

The definitions for the STOP, DDMARDY, and HSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[00:10], -CE1 and -CE2 are PC Card mode signals. The bus polarity of DMARQ and DMACK depend on the active interface mode.

6.4.22. Ultra DMA Data-Out Burst Host Termination Timing

Ultra DMA Data-Out Burst Host Termination Timing Diagram

All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.


Notes:

The definitions for the STOP, DDMARDY, and HSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00], -CE1 and -CE2 are PC Card mode signal definitions. The bus polarity of DMARQ and DMACK depend on the active interface mode.

7. PHYSICAL DIMENSION

Dimension: 36.4mm (L) x 42.8mm (W) x 3.3mm (H)

8. BARCODE DESCRIPTION

yymmddXX

C F C 5 0 S I 0 0 8 G B C F A

Part Number

Manufacturing

Data:YYMMDD FlashType:

9. PART NUMBER DECODER

$CFC\text{-}50SIX^{8}X^{9}X^{10}X^{11}X^{12}\ X^{13}\ X^{14}\ X^{15}$

X ¹ X ² X ³	X ⁴ X ⁵	X ⁶ X ⁷	X ⁸ X ⁹ X ¹⁰ X ¹¹ X ¹²	X ¹³	X ¹⁴	X ¹⁵
CFC	50	SI	128MB 256MB 004GB 008GB 512MB 001GB 001GB 002GB	- o	F R A	U P M A

 X^{13} C:Standard (0°C ~ +70°C) I: Industrial (-40°C ~ +85°C)

X 14 F: Fixed mode R: Removable mode A: Auto Detect mode

X 15 U: UDMA mode P: PIO mode M: MDMA mode A: Auto Detect mode

10. ORDER INFORMATION

CPCFxxxx

Order Name	Capacity
CPCF128M	128Mbyte
CPCF256M	256Mbyte
CPCF512M	512Mbyte
CPCF001G	1GByte
CPCF002G	2GByte
CPCF004G	4GByte
CPCF008G	8GByte
CPCF016G	16GByte